

SUMMARY REPORT
IESD - C OMP- 1 17 1

MENT PROGRAM

AMTRAN SYSTEM DESIGN AND SOFTWARE DESCRIPTION

BY

M. E. Dyer

May 1970

Prepared For

COMPUTATION LABORATORY
GEORGE C. MARSHALL SPACE FLIGHT CENTER

HUNTSVILLE, A LA BAMA

Contract No. NAS8-20415

Prepared By

SCIENCE AND ENGINEERING
TELEDYNE BROWN ENUINEERING

HUNTSVILLE, ALABAMA

ABSTRACT

This report contains a detailed description of the software

developed by Teledyne Brown Engineering to implement the AMTRAN

(Automatic Mathematical Translation) language on the IBM 1130 com-

puter with 8K of core. Included a r e a description of the language and

full documentation of the software system.

Approved:

R. R. Parker , Ph.D.
Manager
Data Processing Laboratories

i i i / iv

TABLEOFCONTENTS

1. SYSTEMDESCRIPTION e e e e e o e e e 0 e e o e a

1.1 AMTRAN Capabilities. . e e e e e e . e

1.2 General Design Concepts . e . e e e e e

1.3 Environment and Limitations e e e e e e e e

2. SYSTEMSPECIFICATIONS e . e e I) e e

2. 1 Input/Output Description - AMTRAN Language.

2.1.1 Arithmetic Expressions. a a e e e e e e

2. 1.2 Assignment Statement. . a a e e

2. 1.3 Program Logic Control Statements e e e

2. 1.4 Program Call Statement. . e

2.1,5 Input/Output Statements. e e e e e

2. 1.6 System Control and Ut i l i t y Statements e

2.2 Designconcepts ., e e e . e

2.3 Functional Description , , a , e e

2.3,l ProgramITZ e e e e

2.3,2 Subsystem 1 e e e e a a e

2.3.3 Subsystem 2 a 0 e e e 0 e e e e e e e e

L 3 . 4 Subsystem3 e e e e e e e e 0 a

2.3-5 Subsys t em4e 0 e e e e a e e e e e e

2.3.6 Program EST e 0 m e

Page

1

2

4

6

9

9

10

14

14

16

16

18

18

27

27

27

27

29

29

29

V

TABLE OF CONTENTS - Continued

2 . 4 System Data Base ., . a e e e m e e e e

2 . 4 . 1 FORTRANCOMMON e e e e e e e e a

2 . 4 . 2 DiskF i l e s . . m e e e e e (I e a

3, SUBSYSTEMDESCRIPTIONS e e e 9 e e m o a o e o a

3 . 1 S u b s y s t e m l . e e e e e

3. 1, 1 Normal Initialization . e e e e . e

3 , 1 . 2 Program Control Commands. e,

3 . 1 . 3 Data Area Control Commands e . e (I

3 . 2 Subsys tem2. 0 0 a e e m a 0 0 e e m e m e

3 . 2 . 1 RESET e e e e e e e e

3 . 2 . 2 SUPPRESS o r CARD e e . e e e e

3 - 2 . 3 END e e a e e e a e e e m e e e a a o

3 . 2 . 4 NAME. e e . e e e e e e e e e e

3 . 2 . 5 E D I T . e * .

3 . 2 . 6 LIST o r EXPLAIN a e e e e e 0 a

3 . 2 , 7 DELETE o r SAVE e e e e . e . e a e 8

3 . 3 Subsys tem3. . . e e .,

3 . 4 Subsys tem4, a e e e e e e e e 0 e m 0 e

4. PROGRAMDESCRIPTIONS o e c o o s m e m e e e o a

4.1 PrograrnCTL a e e a e e e e e

4 . 2 ProgramITZ e e e e e m m e 0 0 0 o o

Page

30

30

42

45

45

45

47

49

49

5 1

52

5 2

5 2

5 2

52

52

5 3

5 3

59

59

60

vi

TABLE OF CONTENTS - Continued

4.3 Subsystem 1 . e e e .
4.3.1 ProgramRST e . e .
4.3.2 Program NAM e . e

4.3.3 Program EDT e e . . .
4.3.4 ProgramDLT e a e .

4.4 Subsystem 2 . . e e . . .
4.4.1 Program RDLL . (I e

4.4.2 ProgramSCA . . e e .
4,4.3 Program SCB e . e

4.5 Subsystem 3 e . e . e e e . e

4.5.1 ProgramSTK a ., . a

4.5.2 Program CDR e . . a

4.6 Subsystem4 e e e

4.6.1 Data Referencing System

4.6.2 Storage Allocation e e

4.6.3 ProgramGETOP . m e

4.6.4 Program RTN e e

4.6.5 Program JMP e e e

4.6.6 ProgramSTV e

4-6 .7 Program W R T

4.6.8 Program LSG

Page

62

62

68

72

7 4

77

77

83

9 1

104

104

109

117

117

120

120

120

125

129

133

135

vii

TABLE OF CONTENTS - Continued

4.6,9 ProgramTRG . . I) a e a e

4.6.10 Program TAB. e e e ., e e e

4.7 ProgramLST a e a a e e . . m

4.7.1 LIST Program Name e rn a . e e e

4.7.2 EXPLAIN System Label. a a e e e

4.7.33 LISTALL. e e e e e e e e e e e o e a

4.8 Service Subprograms e . . . a . e . e e e

4.8.1 SubprogramKYBRD a e . a e

4.8.2 Subprogram TYPAM e * . a e

4.8.3 SubprogramSERCH. e . . e . e ., . e

4.8.4 SubprogramAJS . . a a a . a . . e

4.8.5 SubprogramGET. e e e e e e e

4.8.6 SubprogramGARB e . . ., e a a

4,8,7 Subprogram FRE, e e e e e e e a

4.8.8 SubprogramMOV. . e e e e e e

4.8.9 Subprogram SHF e e e . e a a e e e e a

4,9 File Initialization Programs I) e e e e e

4,y.l ProgramINTL3 e (I e e 0

4.9.2 ProgramALT5. 0 e a e e a

4.9.3 ProgramALT5A e a e e e e m e e e e

4 , l O Modified 1130 Library Subroutines e e e e m

Page

141

144

147

149

150

150

150

150

15 1

154

156

158

16 1

16 3

163

164

164

164

165

167

168

viii

TABLE OF CONTENTS - Concluded

Page

APPENDIX A. ERRORMESSAGES e . e a a a e a a 169

APPENDIX B. PROGRAMLISTINGS a . e . . ,, a e a a 175

ix/x

LIST OF ILLUSTRATIONS

Figure

1- 1

2- 1

2-2

2- 3

3-1

3-2

3-3

3-4

4- 1

4- 2

4- 3

4- 4

4- 5

4- 6

4- 7

4- 8

A- 9

4- 10

4-11

4- 1

4- 13

Title

General System Organization. e e . a e

Internal Format for User Programs e a

Internal Storage Organization a e e

System Functional Flow Chart . e e e e e

Subsystem1 . . . e e a

Subsystem2 . e . e . e . a e a e . . e

Subsystem3 e e e e ., e e e

Subsystem4 ,, . . . e e e e . e a e I)

ProgramITZ. . . e e e e e

ProgramRST. . e . . e e e e e e

P r o g r a m N A M . e e e .
ProgramEDT . e e e e e

ProgramDLT e e . . e . e . e . e e

ProgramRDLL. . e e e e e e

P-rogramSCA e a . . . e a e

ProgramSCB * * a e a e e

ProgramSTK e e e e a e

ProgramCDR e a e e

Variable Referencing Sys ems e e

ProgramCETOP. a e e a e e

Page

5

25

26

28

46

50

54

57

61

63

69

73

75

78

84

95

105

110

119

12 1

123

Xi

LIST OF ILLUSTRATIONS - Concluded

Figure

4- 1 4

4- 15

4- 16

4- 17

4- 18

4- 19

4- 20

4-21

4- 22

4-23

4- 24

4-25

4- 26

Title Page

P r o g r a m J M P e e e e e a e e e 126

ProgramSTV e . . . e e . e . . e ., 130

P r o g r a m W R T . e e . e e e e e (I 134

ProgramLSG ,, e e e e e II e e e 137

ProgramTRG e - e e e a . e e 142

ProgramTAB a e a

Program LST. . e

Subprogram KYBRD.

Subprogram TYPAM

Subprogram SERCH

Subprogram AJS e

Subprogram GET e e

Subprogram GARB e

145

148

15 1

153

155

157

160

162

xi i

LIST OF TABLES

Table

2- 1

2-2

2- 3

2-4

4- 1

4- 2

4- 3

4- 4

4- 5

4- 6

A- 1

A-2

Title

Array Construction and Manipulation Operations e

Input/Output Statements . . . e . . e e e e .
System Control and Utility Commands. e a . a .
Interpreter Instructions e e e . . .
Program Construction Information Read o r W r i t e
Requirements * . .
AMTRAN Character Set and Codes . e e ., . e

System Label Table. . , e e . e . . .
Operator and Delimiter Codes Output By Pr0gra.m
SCB
System Constants and Reference Numbers, . .
Characters and Corresponding Codes Used By
ProgramSTV . , e e e e e a e

E r r o r Numbers and Messages e a e .
E r r o r Messages Requested By Programs in the
System . . . e , a e e e e e e

Page

13

17

19

2 1

6 6 .

80

87

9 3

97

131

170

172

xiii 1 xiv

1. N

Automatic Mathematical Translation (AMTRAN) is a conver sa-

tional mode computing language oriented toward the solution of mathe-

matical problems. The personnel of Brown Engineering Company, Inc,,

have implemented a version of AMTRAN on a small general purpose

computer providing conversational interaction with the user through the

console keyboard/printer.

The AMTRAN system features a well defined, easily learned

syntax and provides automatic a r r ay arithmetic and dimensioning of

variables. In the conversational mode, a s each AMTRAN statement i s

entered into the system, it is interpretively executed. The system

performs checks for syntax and execution e r rors . The features of

automatic a r r ay arithmetic and automatic variable dimensioning allow

the use r to construct generalized algorithms which do not require altera-

tions when applied to new data sets.

constructed by the use r and stored by name in the system.

programs may be constructed in the conversational mode o r entered

into the system for later use without being executed as they a r e entered.

At any time, user programs may be called for execution o r may be

altered or deleted by the user.

concise method for declaring parameters and passing parameters to

programs and functions.

Algorithms and functions may be

User

The AMTRAN language provides a clear,

The AMTRAN software system provides dynamic storage alloca-

tion for data and user defined programs and functions, is modularized

into logical core loads, contains a disk core overlay system, and is

designed to facilitate extensions to the system.

1

1.1 AMTRAN CAPABILITIES

The AMTRAN system recognizes 50 characters and 56 reserved

These provide the user with the following five types of state- words.

ment s :

e Assignment
0 Program logic control
e Program call
0 Input / output
0 System control and utility.

The user is not restricted to entering a single statement at a time but

may combine any of the first four classes of statements to form a larger

programming unit, When combined, these statements a r e referred to a s

substatements and a r e separated by commas,

Computation is specified by arithmetic expressions designed to

The arithmetic operations provided resemble algebraic expressions.

a r e

0 Exponentiation
0 Negation
0 Multiplication
0 Division
0 Addition
0 Subtraction
e Concatenation
0 Less than
0 Greater than
0 Equal
0 Not equal
0 Less than or equal
8 Greater than o r equal.

The following standard arithmeti functions m 1 be us d:

Trigonometric sine
T rig onometr ic cosine
Natural logarithm

o Square root

2

e Arctangent
s Hyperbolic tangent
e Absolute value
@ Exponential.

Computation is performed in floating point. Arithmetic operands may

be scalars o r arrays, provided the dimensions are consistent. Addi-

tional arithmetic functions have been included in the syste,m to facilitate

a r r ay arithmetic.

to a single element o r to contiguous elements.

The a r r ay subscripting capabilities allow reference

The dimension of a variable may be dynamic in a program. The

automatic dimensioning of variables is provided by the assignment state-

ment.

statement will assume the dimension of the result of the computation

designated by the expression to the r ight of the equal sign. Only the

exact amount of storage currently required for a variable is allocated.

A variable appearing to the left of the equal sign in the assignment

The control of the logical flow of a use r algorithm is provided

by an unconditional branch, an iterative statement, and an IF statement.

The IF statement consists of a conditional, a then, and an else clause.

The then and else clauses may consist of several substatements including

additional IF tests.

The program call statements provide the communication between

user programs.

The input/output statements allow the input and output of data

and use r programs.

input and output and data output a r e in a standard format.

Data input may be in free f0r.m; however, program

The system control statements allow the use r to name, store,

and delete programss to save o r delete data, and to change the mode of

statement entry to the system.

3

1.2 GENERAL DESIGN CONCEPTS

A principal objective in the design of the AMTRAN software was

to optimally divide internal storage between the system software and the

user storage areas, in order to maintain an effective balance between

execution speed and internal storage available to the user.

objective, two major design concepts were imple,mented.

To meet this

o The input statement in the AMTRAN language is translated to
a concise form which is then interpreted and executed.

0 The system software is modularized into logical core loads so
that only the module o r modules necessary for the completion
of a specific task or set of tasks need be in core at any particu-
lar time during execution of the syste>m.

The internal form in which an AMTRAN statement is executed is

patterned after a machine language with distinct operator codes and

none o r several operands for each operator.

a user program, whether stored o r under construction, is in a standard

format and is co,mpletely relocatable,

disk) a r e executed, it is this form of the program which i s brought into

core for execution, not the source form of the program which remains

on disk.

The internal structure of

When stored programs (stored on

The various modules of the software syste.m may be grouped into

the primary functional units shown in Figure 1-1 and described below.

e System Control - This portion of the system contrals the over-
all flow of execution between the various modules of the system
and regulates the disk core overlay system.

o Incremental Translation - This portion of the system scans
and parses the input statement, performs syntax checks, and
generates the executable interpreter instructions e

Execution - This portion of the system performs interpretive
execution of the generated interpreter instructions and the core
storage allocation for data and for user programs when executed,

4

INCREMENTAL
TRANSLATION

SPECIAL SYSTEM

FIGURE 1-1 GENERAL SYSTEM ORGANIZATION

5

0 Special System Functions under User Control - This portion of
the system controls the storage, deletion, listing, and editing -

of user programs, the listing of user program names, the
change of statement entry mode of the system, and the dele-
tion o r retention of user defined variables.

A major feature of the software system is the storage allocation

for data.

the interpreter instructions. Storage for user variables, temporary

results, and the system accumulator is provided in one internal storage

data area.

the exact amounts required during execution, is redimensioned as neces-

sary, and, in the case of temporary storage, is made available for further

use a s soon a s possible.

This allocation is a continuous process throughout execution of

Storage for any data type is allocated only a s needed and in

1.3 ENVIRONMENT AND LIMITATIONS

The AMTRAN system described is implemented on an IBM 1130

computer with 8K (16 bit words) of core storage.

a console typewriter/printer and a single disk drive and uses a card

reader/punch and printer.

IBM 1130 FORTRAN IV with some 1130 Assembler language programs

and is operational under Version I1 of the IBM 11 30 Disk Monitor System.

This computer contains

The software system was written mainly in

Within the system, a user program must be written within the

following limitations:

o Maximum of 45 statements (not to exceed 153 interpreter
instructions)

Maximum of 29 variables

Maximum of 54 distinct constants, excluding the integers zero
through ten

Maximum of 10 distinct user programs called.

6

The system will allow the storage of a maximum of 95 user programs.

User programs may be called 10 levels deep.

defined variables, temporary storage, and the system accumulator

contains 604 floating point words.

Data storage for user

A version of AMTRAN is being developed on an IBM 1130 with

16k of core which provides the graphic display of data and alphanumeric

information, an extended operator set, and relaxation of the restrictions

imposed in the 8k implementation.

2.

The system specifications describe the final software syste,m

and include descriptions of the AMTRAN language, the design concepts,

the functional organization of the software, and the syste-m data base.

Because the software was developed as a research project, the AMTRAN

language was, in part, initially specified and was later extended as the

software system was developed. A design concepts section is included

in the specifications to present those concepts which underly the system

software design, but which a r e not apparent in the functional organiza-

tion of the system. The functional description of the syste,m provides an

overview of the functions perfor-med by the system and of their interrela-

tionships.

more than one program in the system.

The system data base is the collection of all data used by

2 .1 INPUT/OUTPUT DESCRIPTION - AMTRAN LANGUAGE

This description is intended to present the basic concepts of the

AMTRAN language and the characteristics of the AMTRAN syntax to

allow understanding of the system software documentation. A detailed

explanation of the AMTRAN language is provided by the users ' .manual

("AMTRAN Users ' Manual", Brown Engineering Interim Report IESD-
COMP-1103, March 1970).

The AMTRAN language allows the use of the character set

(0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N 0 P Q R S T U V W

X Y Z ::: / t - () . The

alphanumeric characters a r e used to form numeric constants and labels,

Numeric constants a r e entered as a string of digits with a minus sign to

indicate a negative number.

quantities.

followed by from zero to five characters which may be either alphabetic

o r numeric,

& ; # $ blank} and a set of 56 reserved words.

A decimal point is optional for integer

An AMTRAN label consists of an alphabetic character

No special characters o r blanks a r e allowed in a label,

9

Labels a r e used as user program names, reserved system labels, and

variable names which symbolically reference scalar o r a r ray quantities.

Labels, numeric constants, and special characters a r e combined

An AMTRAN program statement to form AMTRAN program statements.

consists of a decimal statement number which is output by the system and

a string of input characters terminated by a period and an EOF.

program statement may consist of one o r more AMTRAN statements.

The AMTRAN statements may be grouped into the following types:

Each

Assignment
e Program logic control
e Program call
e Input / output
e System control and utility,

With only a few exceptions, the user may combine statements of the

f i rs t four types to form a program statement.

statements a r e referred t o as substatements and a r e separated by

commas,

When combined, these

2. 1, 1 Arithmetic Expressions

Computation in AMTRAN is specified by arithmetic expressions

designed t o resemble algebraic expressions. Arithmetic expressions

a r e used in the assignment statement, the IF statement, and in several

of the output statements,

provided by the following types of AMTRAN operators:

A wide range of computational capability i s

Arithmetic operations
Mathematical functions
Special operations for a r ray construction and manipulation
User defined arithmetic functions
Subscripting
Relational operations

2. 1. 1. 1 Arithmetic Operations - The following arithmetic opera-

tions a r e provided in AMTRAN:

10

0 :% o r implied - multiplication
0 / - division
0 t - addition
0 - - subtraction
0 :%* o r POW - exponentiation.

The arithmetic symbol o r label separates the two arguments.

The operations car, be performed between constants, variables, o r

expressions in the following combinations:

Two scalars
0 A scalar and an a r ray of n elements
0 An a r ray of n elements and a scalar
0 Two arrays, each with n elements.

An operation performed on the first combination will result in a scalar;

an operation performed on each of the remaining combinations will result

in an a r r ay of n elements.

The result of an operation between ar rays is obtained by perform-

ing the operation between corresponding elements of the arrays.

one argument is a scalar, the operation is performed between the scalar

and each element of the array. An e r r o r condition occurs when an arith-

metic operation is attempted between ar rays of different lengths.

When

2. 1. 1.2 Mathematical Functions - The following mathematical

functions may be used in AMTRAN:

0 SIN - trigonometric sine
0 COS - trigonometric cosine
0 LN - natural logarithm
0 EXP - argument power of e

SQRT - square root
o ATAN - arctangent
o ABS - absolute value
0 TANH - hyperbolic tangent
0 SQ - quantity squared,

Each of these functions requires one argument which may be either a

constant, a variable, o r an expressiop and which is entered after the

label, except for SQ which requires the argument to precede the label.

11

The argument may be a scalar o r an array; the function value will be a

scalar o r an a r r ay the same size as the argument.

tion performed on an a r r ay is obtained by applying the function to each

element of the array.

The result of a func-

2. 1. 1 . 3 Special Operations for Array Construction and Manipula-

tion - The a r r a y arithmetic provided by the arithmetic operations and

.mathematical functions is augmented by the special operations described

in Table 2- 1.

2. 1. 1. 4 User Defined Arithmetic Functions - A user may desig-

nate a sequence of statements to be a program using the NAME statement

(see Table 2-3).

used in the NAME statement is the same a s a variable defined in the

program.

name followed by the parameters required.

is the current value of the corresponding variable when the return is

made from the program.

To designate a functional program, the program name

A functional program i s called for execution by entering the

The value of the function

2.1.1.5 Subscripting - Arrays a r e one-dimensional and are

subscripted using the operator SUB to reference a single element o r

contiguous elements.

where x denotes an a r r ay variable or expression and a and b denote

scalar constants, variables, or expressions:

The operator may be used in the following forms

o x SUB a - refers to the (a t 1)th element of x.
subscripting begins at zero.)

(Jn AMTRAN,

(s x SUB (a THRU b) - refers to the (a t 1)th through the (b t 1)th
elements of X.

o x SUB LAST or x SUB INTERVALS - refers to the last element
of x.

2. 1. 1 .6 Relational Operations - The relational operations

LT - less than
o GT - greater than

12

TABLE 2-1 . ARRAY CONSTRUCTION AND MANIPULATION OPERATIONS

Operation and Argument(s) Value(s) Returned

ARRAY a, b, c, o r
RANGE a, b, c

M I N x

MAX x

SUM x

SUMF x

SHIFT (a, x)

INTERVALS x

m & n

An ar ray w i t h the f i r s t element equal
t o a, t he l a s t element equal t o b, and
the number o f equal s ized increments
equal t o c

A sca la r which i s t he minimum valued
element o f x

A sca la r which i s the maximum valued
element o f x

An ar ray the same s i z e as x which con-
t a i n s the running summation o f t he
elements o f x

A sca la r which i s the sum o f t he elements
o f x

An ar ray the same s i z e as x w i t h the
elements o f x s h i f t e d the number o f
places and i n the d i r e c t i o n spec i f i ed
by a

A sca la r which i s the number o f elements
o f x hinus one

An ar ray w i t h the number o f elements
equal t o - t h e sum o f t he number o f e le -
ments i n m and n. The r e s u l t a n t
ar ray contains the element(s) o f m
fo l lowed by the element(s) o f n

1
The arguments a, b, and c denote sca la r constants, var iab les, o r expres-
s ions; x denotes an ar ray va r iab le o r expression; m and n denote scalars
or arrays.

1 3

EQ - equal
NE - not equal
LE - less than or equal
G E - greater than o r equal

can only be used in an IF test.

arguments which must be scalar constants, variables, o r expressions.

The relation appears between its two

2. 1. 1, 7 Order of Computation - Within arithmetic expressions,

the order of computation is determined by the relative priorities of the

operations - - the operation of highest priority being done first. The

priority of operations is a s follows:

Operations within parentheses

Exponentiation and negation
e Functions (such as user defined functions, SIN, ARRAY, etc.)

0 Multiplication and division
e Addition and subtraction
e Relational operations
0 Concatenation.

Operations of equal priority a r e performed sequentially from left to

right through an expression, except in the case of exponentiation and

negation which a r e performed from right to left.

2. 1.2 Assignment Statement

The assignment statement o r substatement i s of the form

Variable = Arithmetic Expression e

The variable may be subscripted to assign a value to a single element

o r a set of elements o r to assign values to a subarray. When not sub-

scripted, the variable will automatically assume the dimension of the

result of the computation specified by the arithmetic expressionc

2e1.3

2. 1 , 3 , 1 The IF,,Statem& - The IF statement is used to control

execution based on the relationship between two scalar constantsp va

ables, and/or expressions and is of the form

14

I F ql related to q2 THEN substatement(s) ELSE
substatement(s).

When the relation is satisfied, the THEN clause is executed and the

ELSE clause is skipped.

clause is skipped and the ELSE clause is executed. The ELSE clause

may be omitted from the IF statement, in which case, if the relation

fails, the next sequential statement is executed.

When the relation is not satisfied, the THEN

An IF tes t may appear a s a substatement. When it is not the

last substatement, it must be terminated by the special character ; e

An additional IF statement may appear as a substatement in the

If it is not the last substatement in the clause, THEN o r ELSE clause.

it must be terminated by a semicolon.

IF tes t is to be omitted, it must be replaced by a semicolon.

If the ELSE clause of a nested

2. 1 . 3 . 2 The REPEAT Statement - The REPEAT statement

provides iterative execution of a substatement or substatements.

of the form

It is

REPEAT n, substatement(s)

where n is a positive valued scalar constant, variable, or expression.

The substatements a r e repeated n times (n is rounded to an integer

value). REPEAT cannot be used a s a substatement.

2 . 1 , 3 . 3 The GO TO Statement - The GO TO statement is used

to transfer control to a specified statement. The transfer statement

takes the form

GO TO c

where c is an integer o r decimal constant denoting a statement number

in the program.

15

2.1.3.4 The EXIT Statement - The EXIT operator forms a

complete substatement and i s used to create multiple exit points from

a user program. EXIT cannot be entered in the conversational mode.

2. 1.4 Program Call Statement

A user program is called fo r execution by entering the program

When name followed by the parameter string required by the program.

the program execution has been completed, execution will begin in the

calling program at the next sequential statement or substatement.

2. 1.5 Input/Output Statements

The input and output statements allow the input of data and user

programs and the output of data, user text, programs, and system text.

Only the statements to input and output data and to output user defined

text a r e allowed a s substatements.

input/output statement appears in Table 2-2.

The form and a description of each

The selection of input and output device and of fixed o r floating

point format is done using the console sense switches.

for the INPUT statement is selected using sense switch 15 as follows:

The input device

Switch 15 O F F (down) - console keyboard
Switch 15 O N (up) - card reader.

For all of the output statements, the output device is selected using

sense switch 0 a s follows:

Switch 0 OFF (down) - typewriter
Switch 0 ON (up) - printer

For the TYPE, TAB, and PUNCH statements, format selection is con-

trolled by sense switch 1 as follows:

Switch 1 OFF (down) - fixed point
Switch 1 ON (up) - floating point.

16

TABLE 2-2. INPUT/OUTPUT STATEMENTS

Statement

INPUT v a r i a b l e name

TYPE m o r TYPE (m, ..., q) l

TAB m o r TAB (m, . . . 9 q) l

* * ' Y S I 1

c characters '

PUNCH m o r PUNCH (m

TY PEOUT 'a1 phanumer

LIST ALL

LIST program name

CARD

EXPLAIN ALL

EXPLAIN l a b e l

Descr iu t ion

A s t r i n g o f numeric constants i n f r e e
format i s read i n t o the system and
associated w i t h the va r iab le named.
The v a r i a b l e assumes the dimension
of t he i n p u t s t r i n g . The numbers
may be e i t h e r in tegers o r decimals
i n e i t h e r f i x e d o r f l o a t i n g p o i n t
format and are separated by commas
o r blanks.
terminated by two consecutive
slashes (/ /) -

The i n p u t s t r i n g i s

The value(s) o f t he argument o r
arguments a re pr in ted.

The value(s) o f t he argument o r
arguments are p r i n t e d i n tabu la r
form.

The value(s) o f the argument o r
arguments are punched on cards and
p r in ted .

The a1 phanumeri c I nformat i on enclosed
i n primes i s p r i n ted .

The names o f a l l user programs
def ined i n the system are pr in ted.

The source statements o f t he s p e c i f i e d
user program are output.

The source statements o f a user
program are read i n t o the system
from cards

The AMTRAN reserved labe ls are l i s t e d .

An explanat ion of the s p e c i f i e d
reserved l a b e l i s p r i n ted .

lThe arguments m, B e . q may be constants, var iables, o r expressions.

17

2. 1.6 System Control and Utility Statements

Table 2 - 3 describes the system control and utility operations

available in AMTRAN.

arguments cannot be used a s substatements.

The system control labels and any associated

2 . 2 DESIGN CONCEPTS

A design concept basic to the AMTRAN software i s the execution

of an internal form for a user statement rather than the direct execution

of the source statement.

forms the source statement into the internal form and performs syntax

checks.

form, executes the specified operations, and detects execution errors .

The translation portion of the system trans-

The execution portion of the system interprets the internal

The internal form of a statement consists of a sequence of inter-

preter instructions which a r e patterned after a simple assembly language

and a r e executed in order. Each instruction i s one or more words, each

containing an operator code in the f i rs t 7 bits and an operand code in the

remaining 9 bits. Many of the instructions implicitly refer to a system

pseudo accumulator in which all computation i s performed and which

varies in length depending on the operator and the operand o r operands.

Most of the system operations require only one instruction; however,

some operators require o r may have more than one operand.

operands a r e provided in subsequent words after the operator word.

These subsequent words contain a zero value operator to indicate a

multiple word instruction.

operators and the format o r formats for each instruction.

Additional

Table 2-4 provides a list of the interpreter

With few exceptions, the operand is a three-digit number: the

leftmost digit indicates either a program, a constant, o r a variable;

and the remaining two digits specify a particular operand in the indi-

cated class. The operand is a reference number which the execution

18

TABLE 2-3. SYSTEM CONTROL AND UTILITY COMMANDS

Command o r Symbol Response

RES ET

SUPPRESS

EDIT

END

DELETE

The system is reini t ia l ized i n the con-
versational mode. All variables are
deleted and statement numbers begin a t
1.

The system enters the SUPPRESS mode
where statements are entered without
execution. When SUPPRESS is entered i n
the conversational mode I) the current
program under cons t ruct i on i s saved. When
the command i s entered i n the SUPPRESS or
EDIT mode, only the previously saved
conversational mode program i s main-
t a i ned.

The system reprocesses the user program
referenced a f t e r the EDIT command. The
system requests entry of those s ta te-
ments specified by number i n the EDIT
statement. The current mode program
is saved by the system. The original
form of the edited program is main-
tained on f i l e u n t i l the editing process
has been completed

When END is entered i n the conversational
mode, the system i s re ini t ia l ized i n the
conversational mode w i t h statement numbers
b e g i n n i n g a t 1 and a l l variables retained.

When E N D i s entered i n the SUPPRESS mode,
the current program under construction is
destroyed and the previously saved con-
versational mode program is restored for
further statement entry.

When E N D is entered i n the EDIT mode,
the editing process is terminated and
the original unedited program is main-
tained on f i l e .
the l a s t previous mode program for
further statement entry.

The system restores

The system deletes the specified vari-
able(s) and/or console program(s) .
DELETE may be used only i n the conver-
sational mode.
deleted, statement numbers begin a t 1 .

If any variables are

19

TABLE 2-3 - Concluded

Command or Symbol

SAVE

NAME

PAUS E

$

$$

Response

The system performs an E N D operation,
retaining only the specified variables.
SAVE may be entered only in the con-
versational mode.

The current sequence of statements i s
stored as a program under the name
specified i n the NAME statement. B o t h
the source statement and the internal
form of the program are saved on disk.
All i n p u t and output parameters to the
program must be declared i n the NAME
statement. The parameter s t r ing i s
enclosed in parentheses and the individ-
ual variable names are separated by
commas. The program is a functional
program i f the program name i s also
the name of a variable defined i n the
program (see Section 2 e 1 e 1 a 4) a

Execution of the current sequence of
operations stops until PROGRAM START
is pressed on the console keyboard.

The statement l ine currently being
entered is deleted.

The program statement currently being
entered i s deleted,

The preceding character in the s ta te-
ment i s deleted.

20

TABLE 2-4. INTERPRETER INSTRUCTIONS

Opera tor
Code

1

2

3
4

5
6
7
9

12

1 3
14
15
16
17
1 8
22
23

29

30
31
32

Operati on

E x i t from user
program
Call user
program

PAUSE
INPUT

TYPE
PUNCH
TAB
TY PEOUT

GO TO

LT
GT
EQ
NE
GE
LE
ARRAY, RANGE
SH I FT

MIN

MAX
I NPERVALS
SUMF

Number of
I n s t r u c t i o n

Words

1

1 or more

1
4

1 or more
1 or more
1 o r more
2 or more

1

1
1
1
1
1
1
3
2

1

1
1
1

Operand(s)

Not used

First word - program
Remaining words - v a r i a b l e s

i n the o r d e r t o be passed
as parameters

Not used
First word - v a r i a b l e
Remaining words - v a r i a b l e

Cons tan t (s) v a r i a b l e (s)
Cons tan t (s) , v a r i a b l e (s)
Cons tan t (s) , v a r i a b l e (s)
First word - number o f fol low-

ing words t o ouput
Remaining words - message (2

c h a r a c t e r s per word)
244 p l u s the displacement from
the current l o c a t i o n t o w h i c h
the branch is t o be made

name (2 c h a r a c t e r s per word)

See GO TO
See GO TO
See GO TO
See GO TO
See GO IC
See GO TO
S c a l a r cons t an t s v a r i a b l e s
First word - s c a l a r cons t an t

Second word - v a r i a b l e
Constant , v a r i a b l e , or system

See MIN
See MIW
See MIN

o r v a r i a b l e

accumul a t o r l

2 1

TABLE 2-4 - Continued

Opera tor
Code

34
35
36
37
38
39
47
48
49
50
51
54

55

56

57

Operation

LN
ATAN
ABS
TANH
SUM
MAGNITUDE
SIN
cos
EXP
SQRT
Nega t i on
Store
accumulator

Load
accumulator

Load
accumulator and
free
temporary
Free
temporary

Number of
Instruction

Words

1
1
1
1
1
1
1
1
1
1
1
1
2

3

1
2

Operand(s)

See MIN
See MIN
See MIN
See MIN
See MIN
See MIN
See MIN
See MIN
See MIN
See MIN
See MIN
Vari ab1 e
First word - variable
Second word - scalar variable
o r constant specifying sub-
sc r ip t

Firs t word - variable
Second word - scalar variable

Third word - scalar variable

or constant specifying begin-
n i n g subscript

or constant specifying end ing
subscript

Constant or variable
See s tore accumulator
See s tore accumul a tor
Vari ab1 e

Vari ab1 e
First word - variable (l a s t in

Second word - variable (f i rs t
sequence)

in sequence

22

TABLE 2-4 - Concluded

Operator
Code

58
59
60
61
62
63

Operation

Exponenti ate
Mu1 t i p ly
Divide
Add
Subtract
Concatenate

Number o f
Instruct i on

Words Operand(s)

1 Constant o r variable
1 Constant o r variable
1 Constant o r variable
1 Constant o r variable
1 Constant o r variable
1 Constant o r vari ab1 e

lThe system accumulator is specified by a zero operand.

23

portion of the system uses to link to the actual data o r program.

linkage is provided by information associated with the interpreter

instructions being executed. To maintain consistency, this information

i s available when executing instructions in the conversational mode and

in stored programse

the executable interpreter instructions and a linkage area following the

instructions.

during construction i s displayed in Figure 2 - l e

This

The information i s provided by a header preceding

This structure for stored programs and for a program

When the execution portion of the system processes an operand,

the header is used to locate either a variable linkage to the data table

(and thus to the data area), a constant, o r a program name. All of the

location entries in the header a r e relative to the f i r s t word of the header.

Thus, each program in the system can be executed by the same mechan-

i s m and can vary in lengkh, requiring only a minimmum amount of storage.

This structure provides relocatability for programs e

program a r e accomplished by displacements and a r e therefore relocatable.

Branches within a

The limited internal stoage requires program modularization of

The modularity of the system subroutines and the relocat- the system,

able user program structure imposes an organization on the communica-

tion and program area of the system.

storage organization of the system.

integer a r r ay in which programs a r e constructed and executed. To take

advantage of the FORTRAN capability of equivalencing floating point and

integer a r r ays and to avoid building separate mechanisms fo r performing

operations on constants and on arrays, the data a rea and system constants

a r e also included in this one array.

are done through linkage pointers; thus, data elements as well as programs

a r e relocatable within this array. Because user programs a r e stored on

disk and only brought into core when called for execution, the active a rea

is not always required,

used during translation for a work a rea and for tables which a r e required

only during translation,

Figure 2-2 shows the internal

The majority of COMMON is one

All references to data and programs

To minimize core requirements, this a rea is

24

0 Location of f irst variable linkage**
Location of first constant**

0 Location of f irst console program name**
0 Number of parameters
0 Reference number of program i n active table***
0 Reference number of call ing program i n active

0 Location of instruction i n call ing program t o
table***

be executed upon returnt

Executable interpreter
i ns t ruc t i ons

One word per instruction - no t t o exceed 245
i ns t ruc t i ons

Variable linkage area I One word per variable - not t o exceed 50 entr ies

User constants Two words (1st i n odd word) for each d is t inc t
(absol Ute value) constant used by program excl ud-
ing the system constants - no t t o exceed 54
constants

Program ca l l table Four words for each program called - not t o
exceed 10 programs

Three words for program name
0 One word for reference t o active table ***

*The program header must always begin i n odd word when i n core

?Relative t o f i r s t work of call ing program header

**Re1 a t i ve t o f i r s t word of header
***Determined by row entered i n active table when program i s executed

FIGURE 2-1. INTERNAL FORMAT FOR USER PROGRAMS

25

26

2.3 FUNCTIONAL DESCRIPTION

The software system can be divided into six functional subsystems

o r programs.

flow between them.

provide a general description of each functional subdivision.

Figure 2-3 shows the six functional units and the system

The following discussions parallel the flow chart and

2.3, l Program ITZ

The program ITZ initializes the system and is executed only

This program ensures that the user program file is packed. once. If

unpacked, the file is rewritten to remove any unused records between

programs. A table, system constants, and several indicators in COMMON

and the system working file a r e initialized.

2.3.2 Subsystem 1

The major task performed by this subsystem is the initialization

of the system to accept a new user program. This requires initialization

of the program construction a rea and indicators, the statement index and

variable tables, and the user data area. If a change of statement entry

mode is requested, this subsystem saves the current mode program o r

res tores a previous mode program as required.

stores o r deletes programs from the user program file and deletes

specified variables f rom the user data area.

a r e performed upon initial entry into the system and in response to the

following AMTRAN system control commands: RESET, SUPPRESS,

END, DELETE, SAVE, NAME, EDIT, andCARD.

This subsystem also

The tasks of this subsystem

2.3.3 Subsystem 2

This subsystem reads an AMTRAN source statement from the

selected input device and converts the statement to an internal form

which simplifies later t rans lation to executable inte rpr ete r instructions

The source statement is saved on the system working file. The source

statement in the form of a string of character codes is then scanned

27

PROGRAM LST

UT I L I T Y UTILITY
FUNCTION FUNCTION?

1 SUBSYSTEM 2
READ SOURCE STATEMENT
CONVERT LABELS TO INTERNAL CODES I-

I v PERFORM SPECIAL SYNTAX CHECKS

COMPLETE CONVERSION OF SOURCE
------------- t STATEMENT TO INTERNAL CODE STRING

CONVERT INTERNAL CODE STRING
TO EXECUTABLE INTERPRETER

PERFORM SYNTAX CHECKS

k I I

PERFORM STORAGE ALLOCATION FOR BATA
AND PROGRAMS
DETECT EXECUTION ERRORS ------------

OUTPWf ERROR MESSAGE

FIGURE 2-3. S Y S T E N FUNCTIONAL FLOkJ CHART

28

twice to convert it to a compressed internal code string and to perform

syntax checks.

SUPPRESS, END, NAME, CARD, LIST, and EXPLAIN a r e detected

during the first scan and the system flow i s routed to subsystem 1 or

program LST a s required.

commands DELETE and SAVE a r e detected and system flow i s routed

to subsystem it.

The system control and utility commands RESET,

During the second scan, the system control

2.3.4 Subsystem 3

This subsystem converts the internal code string generated by

subsystem 2 to executable interpreter instructions which are to be

executed in order by subsystem 4.

described in Table 2-4.

subs y s t e.m e

The interpreter instructions are

Syntax checks a r e performed throughout the

2.3.5 Subsyste-m 4

This subsyste.m executes the instructions generated by subsystem

3. F o r each instruction, the operand (or operands) is located, validity

checks a r e performed, and the instruction is executed. The subsyste,m

performs dynamic storage allocation for data and user programs and

maintains the linkage between user progra-ms in the execution string.

When an e r r o r is detected, the subsystem terminates execution, follows

the established program linkage back to the conversational mode program,

releases any data associated with called user progra.ms, and prints the

required e r r o r message.

o r programs a r e also output by this subsystem..

E r r o r messages requested by other subsystems

2. 3.6 Progra,m LST

This progra-m, in response to user requests, perfor,ms the output

of the names of all user progra-ms defined in the syste,m, the source

statements of a use r programo the system reserved labels, and prestored

explanations of syste,m reserved labels e

29

2.4 SYSTEM DATA BASE

The system data base consists of FORTRAN COMMON and three

files on disk.

program documentation, each item in the system data base has been

assigned a reference number,

system has been used for items which have several uses.

by a number is used to distinguish between various uses of an item,

Throughout the documentation, reference numbers a r e enclosed in

brackets, { }.

For ease in referencing the data base in subsystem and

A deviation from the standard numbering

A dash followed

2.4.1 FORTRAN COMMON

COMMON consists of nineteen integer variables: KODE (2380),

IDAT (90, 2), IT(10), I, J, L, 11, ID, IE, IFT, KON, LNT, LPV, NCP,

NV, IEX, IGT, NMB, and NAP. The use of each variable is described

in the following sections.

2.4. 1. 1 KODE (2380) { 1. I - The major activities of the system

a r e performed using this array. It contains the program construction

area, system tables, user program execution area, and the user data

area,

is described below, The subscript and dimension specify, respectively,

the beginning subscript and the size of each a r ray in KODE,

The substructure of one- and two-dimensional arrays within KODE

Ref e r ence
Number Subscript Dimension C ont ent s

1 45 0 Program construction area.
The program construction
area has the same structure
a s a stored user program
with the exception of the 4th
through 7th words of the
header, See Figure 2-1 f o r
the program structure.

1 1 252

30

Reference
Number Subscript Dimension

2 1

{ 1.1.1)

{ 1.1.2)

{ 1.1.3)

(1.1.4)

(1.1.5)

3 1

4 1

5

6

7

8

1

1

1

245

Contents

302

410

'User program count - the
current number of user
programs referenced by the
user program being constructed,
i. e., the number of entries in
the program call table { 1.1. 8);
may range f rom 0 through 10.

Previous program count - the
number of user 'programs
referenced after the last user
program statement; may range
f rom 0 through 10.

Previous variable count - the
number of variables referenced
after the last statement, i. e.,
the previous number of entries
in the variable table { 1.2-1.5);
may range from 0 through 29.

Card status:

1 - program not entered from
cards

2 - program originally entered
on cards and stored on the
system working file (20.)

3 - initiate read of program
from cards.

Interpreter instructions area -
instructions to be executed in
the order of appearance, may
contain 0 to 245 instructions,
Instructions s ta r t at KODE(8)
and a r e contiguous. See
Table 2-4 for the interpreter
instructions

31

Ref e r enc e
Number

(1. 1.6)

(1. 1.7)

{ 1. 1. 8)

Subscript Dimens ion C ont ent s

253 50 Variable linkage a rea - each
nonzero entry points to the
row in the data table (2 .)
containing the storage infor-
mation for the variable. The
50 positions correspond to the
50 rows in the variable table
(L2-1.5) .

303

41 1

45 1

(1.2-1,l) 45 1

2, 54 U s e r constants area - contains
each constant entered by the
user in the program under con-
struction; the constants a r e
stored in absolute value float-
ing point.

4, 10 Program call table - contains
one entry for each user pro-
gram called; entries a r e in
contiguous columns beginning
with column 1

690

299

Rows 1 - 3: console program
name (2 characters per word)

Row 4: last active reference
number, i. e. , row in active
table { 1.2-2. 1) where the
name was entered when last
called for execution by the
program being constructed.

Overlay a rea for system
tables and user programs

Overlay I - system tables fo r
translation of AMTRAN state-
ments

Statement conversion a rea -
used for translation of a
source statement, The state-
ment is passed between
programs in one of four
states (for each state, pro-
grams use the remainder of
the a rea for working storage.)

32

Reference
Number Subs c ript Dimensions C ont ent s

(1.2-1.1)
(Continued)

(1.2-1.2) 75 0

{ 1.2- 1.3) 45, 2

1

1

State 1 - statement begins at
subscript 511 and can be up to
218 words long

State 2 - statement ends at sub-
script 749 and may begin at no
lower than subscript 511

State 3 - statement begins at
subscript 461 and may be up
to 289 words long

State 4 - statement begins at
subscript 451 and may be up
to 100 words Long,

Program branch pointer - points
to the statement entry in the
statement index table { 1 2- 1 m 3)
for which the corresponding inter-
preter instructions begin at or
beyond subscript 129 in the
program construction a rea
{ 1.11,

Statement index table - contains
one entry for each statement
entered in the program being
constructed; entries a r e in
contiguous rows beginning with
POW 1

Column 1: statement number,

Leftmost 8 bits - 2-digit integer
to left of decimal point

Rightmost 8 bits - 2-digit integer
to right of decimal point

Column 2: statement length OF

statement length and location,

33

Reference
Number Sub s c r ipt Dimension

(1.2-1.3)
(Continued)

{ 1.2-1.4) 841

{ 1.2-1.5) 891

50

50, 5

Contents

Form 1 - number of records
on the system working file
(20. } for the AMTRAN source
statement

Form 2 -
Leftmost 9 bits - number of
records on the system work-
ing file (20 .) for the source
statement

Rightmost 9 bits - subscript in
program construction area
{ 1.1) where interpreter instruc-
tions begin for this statement,
If the row in the table is less
than the program branch pointer

contains the
e If the row is

greater than o r equal to the
program branch pointer, this
contains the actual subscript
minus 127.

EBCDIC table - EBCDIC codes
for the AMTRAN characters
ordered by the AMTRAN
character codes. The EBCDIC
eode for each character appears
in the left half of the word with
an EBCDIC coded blank in the
right half of the word.

Variable table -
Rows 1 - 29: one entry for each
variable referenced in the pro-
gram under construction; entries
a r e contiguous and made in the
order of f i rs t appearance begin-
ning with row 1,

3 4

Reference
Number Subs c ript Dimension

(1.2-1.5)
(Continued)

Columns 1 - 3: variable
name (2 characters per word)

Column 4:

0 - variable undefined

1 - variable defined (has
appeared to the left of
an =)

Column 5:

1 - column 4 cannot be changed

0 - initial value

-2 - column 4 can be changed

Rows 30 - 50: the following
areas a r e used, the remainder
of the table is unused,

Row 30, Column 4: indicates
the requirement of a temporary
variable for the count in a
REPEAT statement

0 - not required

1 - required

Rows 30 - 50, Column 4: one
word for each possible tempor-
a r y variable

0 - variable not required

1 - variable required f o r stor-
age of temporary results.

ROWS 32 - 42, Columns 2, 3:
control tables required by the
program SCB,

35

Reference
Number Sub s c r ipt Dimension

f l . 2 - 2)

(1.2-2.1)

(1.2-2,2}

{ 1.2-2.3)

(1.3)

45 1

452

5 02

503

1141

1

10, 5

1

638

1240

Contents

Overlay I1 - used for execution
of user programs when called.

1

Active table - contains one entry
for each user program in the
program execution a rea { 1.2-
2.3); entries a r e not neces-
s a rily contiguous,

Column 1: subscript in KODE
at which program begins (loca-
tion of the first word of the
program header) 3

Column 2: length of the program

t - progra,m currently in
execution chain

- - program not in execution
chain

Coluams 3 - 5: program name
(2 characters per word),

Active a rea pointer - points to
subscript where next program
may begin in the program
execution a rea { 1.2-2.3).

Progra>m execution a rea e

Data a rea - data is stored in
floating point and accessed f o r
arithmetic operations by
equivalencing a floating point
a r r ay to KODE. Data is stored
beginning in an odd subscripted
location.

36

Reference
Number Subs c r ipt Dimens ion

{ 1. 3. 1) 1141 1212

(1. 3.2) 2353 28

C ont ent s

User data a rea - storage for
user variables, temporary
variables, and the system
accumulator - initial values
are assigned to the following:

Subs c r i pt Value

1141 1145
1142 604
1145 0
1146 0.

System constants - contains
the following floatigg point
numbers in the order listed:
0.0, 1.0, 2.0, 3.0, 4.0,
5.0, 6 , 0 , 7.0, 8.0, 9.0, 10.Op
3.1415927, 57.2958, 0.0174533.

2.4. 1.2 IDAT (90,2)’ {Z. 1 - Data table used to link the variable

linkage a rea (1. 1.6) to data in the user data a rea (1.3.1).

entry for each data set.

row 1.

Contains one

Entries are in contiguous rows beginning with

Column 1 - floating point subscript of f i rs t element in
data set

Column 2 - number of elements in data set.

Note: Row 90 is reserved for the system accumulator,

2.4k1.3 - General working array, The ten entries

have the varying uses described below.

Ref e renc e
Number Subs c r ipt

(3.1-1) 1

Contents

During EDIT mode - location in user
program table (2 1,4} of program being
edited,

Reference
Number Subscript

(3.1-2)

(3 . 2 4 2

{ 3.2-2)

(3.31

(3.5

(3.6)

5

6

Cant ent s

During interpreter execution - the inter-
preter operator being executed.

During EDIT .mode - source statement
record pointer - record number on the
user program file { 2 1. } where the next
source state.ment begins.

During interpreter execution - operand o r
first operand for operator being executed
(3.1-2).

During EDIT - points to entry in statement
index table { 1.2- 1.3) for last statement
edited.

Type of entry to progravn RST:

1 - entry for normal initialization of program
construction a rea

2 - entry from program DLT, indicating a
pr0gra.m has been deleted from the user
program file (21. }

program has been stored on the user
program file

4 - entry from subsystem 2, indicating a
request for a change of statement entry
mode

3 - entry froam program NAM, indicating a

5 - entry from program DLT, indicating
data storage has been made available.

Unused

Source statement record count - one plus
the number of records occupied on the
system working file (20. } by the progra,m
source statements, i. e, the relative record
for the storage of the next source state.ment,
The record number is relative to a base
record determined by the statement entry
mode { 16.) - may be in file a rea (20.1
(20.2}, o r (20.3).

38

Refer enc e
Number Subs c r ipt Contents

(3.7-1) 7

(3.7-2)

(3.7-3)

{ 3.9- 1)

(3.9-2)

8

9

(3.9-3)

(3.10-1) 10

{ 3 e 10-2)

Type of entry to program DLT:

1 - perform system control commands SAVE

2 - perform system control commands SAVE
ALL or END (when entered in the conver-
sational mode).

o r DELETE

Subclass indicator for programs LSG and TRG.

Type of entry to program RTN:

1 - normal return from user program

2 - return f rom use r program and output

3 - output e r r o r message1

e r r o r message

Overlay status :

1 - system tables in core - Overlay I { 1,2- 1)

2 - user prograxms in core - Overlay u[(1.2F2),e

When processing the EXPLAIN operator -
number indicating which explanation to out-
put fr0.m the system control file (22. 7).

When processing the LIST program operator -
record on the user progra,m file (21.) where
internal form of program begins.

During interpreter execution - storage allo-
cation parameter e

Type of entry to program LST:

- - process LIST ALL operator

0 - process EXPLAIN operator

-t- - process LIST progmm operator - nu.mber
of words in source program to be listed,
Program is sto ed 2 characters per word,

During interpreter execution - storage allo-
cation parameter,

39

2.4.1.4 I { 4.2 - General working register with the following

special uses:

Refer enc e
Number Use -
14-11 During interpreter execution - current location -

subscript location in KODE of interpreter instruction
which is currently being executed.

(4-2) On entry to program EDT - displacement relative to
KODE (510) at which scan for statement numbers i s to
begin

(4-3) On entry to program SCB - displacement relative to
KODE (510) at which scan i s to begin,

2.4. 1.5 J {5* 1 - During interpreter execution - operator class.

2.4. 1.6 L {6, } - Last instruction pointer - subscript in inter-

preter instructions area (1, 1.5.) of last interpreter instruction to be

executed, i. e., the last instruction generated for the current statement.

2.4.1.7 I1 {7* 1 - FORTRAN record control for all files.

2.4.1.8 ID C8.3 - Current program pointer - subscript of loca-

tion in KODE containing the f i rs t word of the header for the user program

currently being executed.

2. 4. 1. 9 IE { 9 . } - Erro r indicator:

0: no e r r o r
>O: reference number for e r ror ,

2.4.1.10 IFT (10.1 - Data table entry count - number of entries

in the data table (2 .) excluding the entry (row 90) for the system accumu-

lator; may range from 0 through 89.

2.4.1.11 KON { 11.) - Constant count - current number of user

constants entered in the program being constructed, i. em

of entries in the user constants a rea {le 1.7): may range frQm 0 through

5 4.

the number

40

2 . 4 . 1 . 12 LNT { 12 .1 - Data storage count - number of floating

point words currently available in the user data storage area (l , 3 . 1);

,may range fr0.m 0 through 604.

2. 4. 1. 13 - Last previous instruction pointer - sub-

script of location in the interpreter instructions area (1.1.5) containing

the las t interpreter instruction generated for the previous program

statement.

2 . 4 . 1. 14 - Number of user programs stored on the

user program file (2 1 .) ; same value as

2 . 4 . 1 . 15 NV { 1 5 . 1 - Variable count - current number of vari-

ables referenced by the program being constructed, i. e.

variable names entered in the variable table { 1 . 2 - 1 . 5) .

the number of

2 . 4 , l . 16 - Statement entry mode:

1 - conversational mode, statements executed when entered

2 - SUPPRESS mode, statements not executed (programs entered
on cards a r e processed in the SUPPRESS mode)

3 - EDIT .mode, program reprocessed with alterations but with-
out execution,

2 . 4 , 1 , 17 - Subscript of location in KQDE at which

an interpreter branch instruction was last executed,

2 . 4 . 1. 18 - Statement count - number of state,ments

enteredo i, e,

the current statement.

points to the entry in state,ment index table { 1.2- 1,3) for

- Active program count - number of entries

number of programs in the program in the active tab1 i. e.

41

2.4.2 Disk Fi les

2.4.2. 1 System Working File (20. } - The system working file

consists of 7, 360 one-word records used for the following information:

Beg inning
Reference Record Number
Number Number of Records Contents

(20.1) 1 1140 Source statements for conversa-
tional mode program

(20.2) 1141 1140 Source statements for SUPPRESS
mode program

(20.3) 2281 1140 Source statements for EDIT mode
program

(20,4) 342 1 1170 Conversational mode program and
indicators saved during SUPPRESS
mode

(20.5- 1) 4591 1170 Last previous mode program and
indicators saved during EDIT mode

(20.5-2) 4591 1600 Temporary storage of f i rs t 1, 600
words of KODE when area is needed
for repacking of the use r program
file by the program RST

{20,6) 6191 40 0 Overlay 1 { 1.2- I) , except statement
conversion a rea { 1 .2 -1 ,1)

(20,7) 6591 39 1 Overlay 11 (1.2-2)

6982 379 Unu s e de

2 ,4 ,2 ,2 U s e r Program File {21e 2 - The user program file con-

sists of 30, 720 one-word records organized in the following manner:

42

Beginning
Reference Record Number

Number Number of Records

(21.1)

(21.2)

(21.33

c21.4)

1

2

3

4

1

1

1

96, 6

Contents

File status:

0 - packed

1 - not packed

First record available fo r program
storage

Number of user programs stored
on file (Same value: as (14.).)

.

User program table - one entry
for each program; entries arranged
in alphabetical order and in con-
tiguous rows beginning in row 1.

Columns 1 - 3: programname (2
characters per word)

Column 4: record number at which
internal form of program begins
(see Figure 2-1 for program structure)

Column 5: record number at which
the source statement count is stored.
This is followed by the statement
index table and the source state.ments
of the program.

Column 6: number of records
occupied by state,ment count,
state.ment index table, and
source statements

(21,5) 5 80 30, 141 Records for pr0gra.m storage.

2.4.2.3 - The system control file

consists of 14, 080 one-word records organized in the following units:

43

B e g inning
Ref e rence Record Number

Number Number of Records Contents

(22.1) 1 56, 4 System label table -
Columns 1 =,.. 3: system label (2
characters per word)

Column 4: control code for
scanning e

(22.2) 40 1

(22.3) 46 7

122.4) 501

(22.5) 601

(22.6) 70 1

{22* 7) 2100

(22.8) 22 12

15

34

50

100

Array containing codes used by
program SCB to reformat REPEAT
statement

Initialization a r r ay for programs
STV and TAB.

EBCDIC table - EBCDIC codes for
AMTRAN character set ordered by
AMTRAN character codes (same
as { 1.2- 1.4)).

E r r o r message control a r ray - one
entry for each e r ro r message con-
tains the record number at which
the message begins.

1399 E r r o r messages - stored 2 char-
acters per word,

2, 56 System explanation control table -
the order of entries in this table
corresponds to the labels entered
in the syete-m label table,

Row 1: record number at which
explanation begins

Row 2: number of records in
explanation

111,869 &planations for Byst
(2 characters per word),

44

The four subsystems presented in the functional description (see

Section 2.3) and flowcharted in Figure 2-3 a r e described further in this

section.

of each subsystem a r e presented.

structure of the programs comprising each subsystem.

elements appearing in dotted lines a r e tasks performed for a subsystem

by the system control program CTL,

The specific tasks required to achieve the functional capabilities

Flowcharts a r e provided to show the

The flowchart

3.1 SUBSYSTEM 1

The major task for this subsystem is the initialization of the

system to accept a new user program.

subsystem are for

The three possible entries to the

0 Normal initialization (entry 1)
0 Program control commands (entry 2)
0 Data a rea control commands (entry 3).

The various entries and the actions taken a r e shown in Figures 3 - 1 and

described below.

3. 1. 1 Normal Initialization

Upon a normal entry to the subsystem, program and data initializa-

tion are performed.

initialized:

Fo r program initialization, the following a r e

0 Program construction a rea (1, 1) (except card status (1. 1.4))
0 Program branch pointer (1.2- 1.2)
0 Statement index table (1.2- 1.3)
0 Variable table { 1.2- 1 e 5)
0 Source statement record count (3 . 6)
0 Last instruction pointer (6.)
0 E r r o r indicator (9 .)
0 Constant count (11.)
0 Last previous instruction pointer (13.)
e Statement count (18.).

45

__j

I
I
I
I
I
I
I
I
I
I
I
I

I A

e
G =-
in m

46

F o r data initialization, the following a r e initialized:

e User data a rea {le 3-1)

e Data storage count (12e}s
Data table entry count (10,)

3.1.2 Program Control Commands

The actions taken in response to the program control commands,

i. e. SUPPRESS, END, CARD, EDIT, and NAME, a r e described below,

3.1.2.1 SUPPRESS - If the system i s in the EDIT mode when the

SUPPRESS command occurs, the system restores the program construc,

tion information on the system working file {20. 5-11 for the previous mode.

If the system is in the conversational modes the following program con-

struction information is saved on the system working file (20.4):

0 Program construction a rea (1.1)

0 Overlay I (1 , 2m1}B except the statement conversion a rea {1.2-1.1)

0 All remaining variables in COMMON, except the data table { 2, }
and the number of user programs { 14.).

In all modes, the statement entry mode (16.) is reset and normal program

initialization is done.

3.1.2,2 END - When the END command i s entered in the conver-

sational mode, all temporary data storage is freed and normal program

initialization is done,

When the END command is entered in the SUPPRESS o r EDIT

mode, the previously saved program construction information is restored

(see Section 3. 1.2. 1).

3.1,2.3 CARD - The subsystem will process the CARD command

as a SUPPRESS command (see Section 3. 1. 2. l), with the additional action

of setting the card status 1. 1.4) to three.

47

3.1.2.4 EDIT - The subsystem will perform ten tasks in response

to an EDIT command: validate the statement numbers to be edited or

inserted; save the program construction information (see Section 3. 1.2. 1)

on the system working file (20. 5-'1) when in the conversational o r

SUPPRESS mode; initialize the statement index table (1.2-1. 3) from the

table stored on the user program file (21.) with the program to be edited;

mark the statements to be edited and/or create entries for statements to

be inserted; initialize the source statement record count (3.2- 1) and the

pointer to the last statement edited (3.3); se t the statement entry mode

(16.3 to the EDIT mode; and perform normal program initialization,

omitting initialization of the statement index table.

3. 1.2,5 NAME - In response to the NAME command, the

information in the program construction a rea (1.1) is processed to

generate the final internal form of the program.

performed on the program name, parameter string, and interpreter

branch instructions. The internal form of the program is stored on

the user program file (21.53, along with the following information:

Validity checks a r e

0 Statement count (18.)

0 Statement index table { 1.2- 1.3}, omitting unused rows and
placing column two in form 1

o Program source statements f rom the system working file (20.) .

The program name and storage information a r e entered in the

program control table (21.4) and the record control indicators { 21. l),

(21.2), and (21.3) a r e updated on the program file. The performance

of the remaining tasks is dependent on the statement entry mode: i f the

program was entered in the conversational modeo perform normal

program and data initialization; if the program was entered in the

48

SUPPRESS mode, res tore the previously saved program construction

information (see Section 3. 1.2. 1) for the conversational mode; if the pro-

gram was entered in the EDIT mode, repack the program file (21.] and

restore the program construction information for the last previous mode.

3.1.3 Data Area Control Commands

The response of the subsystem to the data area control commands

SAVE and DELETE is explained below.

3.1.3. 1 SAVE - For the SAVE ALL command, the subsystem

frees all temporary storage in the data a rea and performs normal

program initialization.

In response to the SAVE command followed by variable names,

the subsystem frees all elements in the user data a rea (1.3.1) not

specified in the SAVE statement and performs normal program

initialization e

3. 1. 3. 2 DELETE - Programs specified in the DELETE state-

ment are deleted from the user program file (21,) and the program file

is packed.

variables a r e freed in the user data a rea { 1.3.1).

initialization is performed if any variables a r e deleted.

Variables specified in the DELETE statement and temporary

The normal program

3.2 SUBSYSTEM 2

Subsystem 2, shown in Figure 3-2, reads an AMTRAN source

statement, converts the statement to an internal code string suitable for

translation to executable interpreter instructions, and performs syntax

checks,

The AMTRAN source statement is read into the statement con-

version a rea (l e 2 - l a I) f rom either the keyboard, card readerg or disk

49

N
I

Cr)

H
LL

50

and is saved on the system working file (either (20. l), (20.2), o r

(20.3)). The source statement is then scanned to convert labels,

numeric constants, and special characters to internal codes. A s

required, the subsystem updates the following:

0 Statement count { 18. }
0 Statement index table { 1.2- 1.3)
0 Variable count { 15. }
0 Previous variable count { 1.1.3)
0 Variable table { 1 e 2- 1.5)
0 Program count { 1.1.1)
0 Previous program count {I. 1 .2)
@ Program call table (1.1.8)
0 Constant count (11. }
0 User constants a rea {1.1,7)
0 Source statement record pointer for the user program file (3.2-1)
0 Pointer to the last statement edited (3.3)
0 Source statement record count for the system working file (3.6).

Special formatting of the statement string and preliminary syntax checks

are done for the operators ARRAY, RANGE, LAST, PAUSE, EXIT,

SQ, INTERVALS, TYPE, TAB, PUNCH, and TYPEOUT, and for the

IF and REPEAT statements.

The normal exit from the subsystem is to subsystem 3 with

the internal code string in state 3 of the statement conversion a rea

(1.2- 1, l},

nizes certain system control and utility commands. The commands and

the tasks performed in response by the subsystem a re discussed below.

Powever, alternate exits occur when the subsystem recog-

3 . 2 , l RESET

On a RESET command, the subsystem sets the statement entry

mode (16. } to the conversational mode and the previous variable

count { 1.1.3) to zero, and routes the system flow to subsystem 1,

entry 1.

5 1

3 . 2 . 2 SUPPRESS o r CARD

The subsystem sets the type of entry to program RST (3 . 4)

to four and routes the system flow to subsystem 1, entry 2.

3 . 2 . 3 _I_ END

When END is entered in the conversational mode, the type of

entry to program DLT (3 . 7 - 1) is set to two and the system flow is

routed to subsystem 1, entry 3.

the subsystem performs the same tasks as for SUPPRESS.

In the SUPPRESS o r EDIT mode#

3 . 2 . 4 NAME

The system performs syntax checks and formate the program

The system flow is routed to subsystem 1, entry 2. name.

3 . 2 . 5 EDIT

To process an EDIT comrnand, the subsystem performs syntax

checks, initializes the pointer to the program table (3 . 1 - 1) and the

FORTRAN record control (7. }, and routes the system flow to sub-

system 1 , entry 2 .

3 . 2 . 6 LIST or EXPLAIN

For a LIST or EXPLAIN command, the subsystem sets the type

of entry to program LST (3 .10-1}# the EXPLAIN o r LIST control indi-

cator (3 . 9 - 1, - 2 } # and the FORTRAN record control (7 . } # and routes

the system flow to the program LST,

3 . 2 . 7 DELETE o r SAVE

On a DELETE o r SAVE, system flow is routed to subsystem 1,

entry 3.

5 2

3.3 SUBSYSTEM 3

Subsystem 3, flowcharted in Figure 3-3, converts the internal

code string (state 3 of the statement conversion a rea (1.2-1.1)) generated

by subsystem 2 to the corresponding sequence of interpreter instruc-

tions executable by subsystem 4 and performs syntax checks. From

the internal code string, the subsystem first generates a postpfix

Polish stack based on the operation priorities (see Section 2. 1. 1. 7).

The stack is generated so that the order in which operations are to be

performed corresponds to their order of occurrence from left to right

and so that the associated operands immediately precede an operation.

The subsystem then uses this stack to generate the executable inter-

preter instructions.

instructions to perform each operation and to store the result are

generated.

stack and the stack is compressed.

the stack has been transformed into the corresponding interpreter

instructions.

Moving along the stack from left to right, the

The result then replaces the operator and operands in the

This process is continued until

The generated instructions a re entered into the interpreter

instructions a rea f1.1.5) a t the location specified by the value of the

pointer to the last interpreter instruction (13. }.

statement entry, column 2 of the statement index table (1.2- 1. 3) is

changed to form 2.

is set.

For the current

The current interpreter instruction limit (6. }

3.4 SUBSYSTEM 4

Subsystem 4 executes the interpreter instructions generated

by subsystem 3.

pointer to the last instruction generated for the previous statement

The instructions to be executed are specified by the

53

INTERNAL CODE STRING
PERFORM SYNTAX CHECKS

I N INSTRUCTION AREA QF PROGRAM
CONSTRUCTION AREA

FIGURE 3-3. SUBSYSTEM 3

5 4

{ 13. } and the current instruction limit (6 . } *

a r e executed in the order of occurrence.

separating the operator code (3.1-2) and the operand code (3 . 2 - 2) .

The operator is then classified according to the fallowing:

The instructions

Each instruction is upacked,

Class

1

2

3

4

5

6

Subclass

1

2

3

4

5

6

1

2

3

4

5

Ope rato r s
(See Table 2-4 for the Operator Codes)

Exit from user program

Call user program

INPUT

TYPE, PUNCH, TYPEOUT

Load accumulator, load accumulator and
free temporary

SIN, COS, EXP, SQRT, NEG

GO TO, LT, GT, EQ, NE, GE, LE

Store accumulator

F ree temporary

ARRAY o r RANGE

MIN, MAX, INTERVALS, SUMF

LN, ATAN, ABS, TANH, SUM, MAGNITUDE

SHIFT

**
7

8

PAUSE

TAB.

55

The subclass indicator (3.7-2) is set, if required by the classifi-

cation.

flow is routed to the appropriate program for execution of the operator.

Figure 3-4 shows the flow within subsystem 4.

Depending on the operator classification number., the system

For each operator, the operand i s classified by the appropriate

program and, where data is specified, the data is located. Execution

checks a re performed and the operator is executed.,

for data may be required in the execution of operators of all classes

except 4, 5 (subclass 4)p 7, and 8. Storage allocation €or user programs

can only occur when a class 2 operation i s being executed.

Storage allocation

When an e r r o r is detected the subsystem terminates execution

of the interpreter instruction, follows the established program linkage

back to the conversational mode program stored in the program con-

struction a rea { 1. l}, releases any data not associated with the conver-

sational mode program, and prints the required e r r o r message. E r ro r

messages requested by other subsystems o r programs a re also pro-

vided by subsystem 4.

5 6

I INITIALIZE POINTER TO CURRENT i
I INTERPRETER INSTRUCTION I

 SET TYPE OF
ENTRY TO
PROGRAM RTN

PROGRAM RTN

\

PROGRAM JMP

/’ \

CLASS 2? > /’ PERFORM PROGRAM STORAGE ALLOCATION

PASS PARAMETERS AND CONTROL ‘
SET POINTER TO CURRENT INTERPRETER ‘,\ / /’

\ ‘
\ /

\

F\
’ \

/’

\\ /’
CLASS 3? > PERFORM DATA STORAGE

PRINT ERROR MESSAGE u

E X I T TO
SUBSYSTEM 1

FIGURE 3-4. SUBSYSTEM 4

57

P

PROGRAM TRG

EXECUTE CLASS 6 INSTRUCTION

FIGURE 3-4 - Concluded

58

4. PROGRAM DESCRIPTIONS

Detailed descriptions of each program in the system a r e provided

in this section.

however, in order to maintain clarity in the explanations of the programs'

major tasks, the e r r o r checks a r e not detailed in each program, Appendix

A contains a list of the e r r o r messages and a table showing which programs

can request the output of each message.

in Appendix B.

Many of the programs perform extensive e r r o r checks;

Program listings a r e provided

4. 1 PROGRAM CTL

The Assembler language program CTL is the control program of

the entire system. It is called by the main program AMTRN which exists

only to take advantage of the dibk file and COMMON definition capabilities

of FORTRAN.

functional flowchart, Figure 2-3, and the functions which appear in dotted

lines in the flowcharts of the four subsystems, Figures 3-1, 3-2, 3-3, and

3-4. By checking indicators and parameters set by the various programs,

program CTL handles all routing of the system flow between subsystems

and programs within subsystems.

following programs, which cannot directly call one another:

Program CTL performs all of the functions shown in the

Program CTL directly calls the

Subsystem Program

ITZ

LST

1 RST
NAM
EDT
DLT

2 RDLL
SCA
SC B

59

Sub s y st em

3

4

Program

STK
CDR

GETOP
RTN
JMP
ST V
W RT
LSG
TRG
TAB.

The organization of the control program and the programs of the system

is isnposed by the characteristics of the IBM 1130 Disk Monitor System

and by core limitations.

4.2 PROGRAM ITZ

The program ITZ, flowcharted in Figure 4-1, initializes the

system and is executed only once.

word (21.1) on the user program file (21.3 to determine if the file is

packed or unpacked, and repacks the file if required. After packing the

file t o remove any unused records between programs, the file status

word is set to zero, and the updated pointer to the first available record

c21.2) and the updated user program table (21.4) a r e written on the file.

Two pontrol a r rays used by program SCB in subsystem 2 are initialized

ip COMMON.

The progra,m checks the file status

The ar rays take up unused space in the variable table

{1.2-1.5), namely, the first and second columns of rows 32 through 43.

The system constants { 1.3.2) are also initialized.

{ 1.2-1.4) is read into COMMON from the system control file (22.4) and

initialized on the system working file (2 0 . 6 3 .

The EBCDIC table

The card status { 1. 1.41,

overlay status (3.81, statement entry mode {16,3, and the type of entry

to program RST (3.4) a r e set to one; the variable { 15.3 and previous

variable { 1. 1-31 counts a r e set to zero.

60

PROGRAM F I L E

I N I T I A L I Z E SCAN
TABLES AND SYSTEM
CONSTANTS

I N I T I A L I Z E EBCDIC
TABLE

SYSTEM
WORKING

I I N I T I A L I Z E : I
CARD STATUS
OVERLAY STATUS
STATEMENT ENTRY MODE
ENTRY TO RST
VARIABLE COUNT
PREVIOUS VARIABLE COUNT

-1. PROGRAM ITZ

6 1

4.3 SUBSYSTEM 1

4.3.1

The .major tasks of this program a r e the initialization of the

systesn to accept a new program and the restoration of a previous mode

program for continued entry of statements.

controlled mainly by the type of entry (3.4) which indicates the following:

The functioning of RST is

1 - Entry fro,m program ITZ, program EDT, subsystem 2, o r
subsyste,m 4, indicating program initialization requirement

2 - Entry from program DLT, indicating a program. has been
deleted fr0.m the user program file (21.)

3. - Entry from program NAM, indicating a program has been
stored on the user progra,m file

4 - Entry frovn subsystem 2, indicatikg a change of state,ment
entry .mode require-ment

5 - Entry fro,m program DLT, indicating storage in the user
data a rea { 1.3.1) has been freed.

The types of entry to RST a r e discussed below in the order in which they

appear in the flowchart, Figure 4-2.

4.3. 1. 1 - Program RST updates the user program

table (21.4) after the program NAM has stored a user program on the

user program file (21.).

tion a r e provided for RST in six words, beginning in KODE(513).

six words contain the infor.mation to be entered directly into the program

control table:

The program name and file storage infor,ma-

The

Subscript in KODE

513, 514, 515

516

C ont ent s

Program name (2 character per word)

Record number at which internal form of
program begins on the file

62

REA0 USER PROGRAM TABLE FROM F I L E
INSERT PROGRAM NAME AND F I L E STORAGE INFOR-
WTION I N TABLE I N ALPHABETICAL ORDER
INCREKNT THE NUMBER OF USER PROGRAMS OR
DELETE PREVIOUS PRoGRAn N M IV(D SET F I L E

URITE F I L E CONTROL UORM AND USER PROGRAM
TABLE ON F I L E

TYPE 3? STATUS

SET OVERLAY STATUS
I A=, TYPE 4 ? TO TYPE 1 + MM? SE:REvIWS CAR0 STATUS YARImLE u)uNT 1

& $0
I AS REQUIRED:

RESTORE PROGRAn CONSTRUCTION INFORMATION
FROM F I L E
SET CORE STATUS, ERROR INOICATOR. AN0
NUEBER OF ACTIVE PROGRAMS SYSTEM

WORKING
FILE AS REQUIRED:

SAVE CONVERSATIONAL WOE PROGRAH
CONSTRUCTION I N F O M T I O N
SET STATEMENT ENTRY MODE, CARD STATUS,
AN0 PREVIOUS VARIABLE COUNT

I F I N CfflVERSATIOHAL MODE AN0 NO VARIABLES ARE
DEFINED, I N I T I A L I Z E OATA AREA
I F REQUIRED, L A O OVERLAY I AN0 SET OVERLAY STATUS
SET PROGRAM LOCATION AND COUNTERS
OUTPUT HEADING FOR CONVERSATIONAL OR SUPPRESS
WDE AN0 CLEAR STATEKNT INDEX TABLE
SET PROGRAM BRANCH POINTER
I N I T I A L I Z E P R O G W CONSTRUCTION AREA
CLEAR INDICATE0 AREAS OF VARIABLE AN0 OATA TABLES

FIGURE 4-2. PROGRA

6 3

Subscript in KODE Contents

517

518

Record number at which the source
statement count is stored

Number of records occupied by state-
.merit count, statement index table, and
sour<: e statements .

The program table is read from the user pr0gra.m file and the

program name and storage information a r e entered into the table, keep-

ing the table in alphabetical order by progra,m name.

entered into the table a s the resulk of an EDIT operation and if the program

name is different f rom the previous name, the previous entry for the

pr0gra.m is deleted fr0.m the table.

determined by the indicator (3. 1-1) which was set on the initial EDIT

statement to the row in the program table (21.4) containing the informa-

tion for the program being edited.

the file status word {21. 1) is set to one,

the conversational o r SUPPRESS made, the number of console program$

{ 14.3 and (21.3) is incremented.

written on the user program file.

If the program was

The requirement fo r this action is

If the system is in the EDIT ,mode,

If the program was named in.

The updaked pr0gra.m table (21.4) is

The overlay status (3,8) is set to two.

If the system is in the conversational mode, the previous vari-

able count { 1. 1.3) is set t o zero, the card status (1.1.4) and the type

of entry to RST (3.4) a r e set to one, and the program functions proceed

as for an entry type 1 (see Section 4. 3. 1.4).

If the system is not in the conversational modeo the program

functions for an entry type 4 a r e executed, omitting the setting of the

entry type t o onee

4.3. 1.2 - The first action taken on this type of

entry is to reset the entry type to oneo

and processes any change of statement entry mode required by the

following user commands :

Program RST then determines

64

0 NAME (only if the program was entered in the SUPPRESS or
EDIT mode and has already been stored on the user program
file (21.))

SUPPRESS

0 END (when entered in the SUPPRESS o r EDIT mode)

e CARD.

A change of entry mode may require the storage or retrieval of the

following program construction information:

o Program construction a rea (1. 1)

0 Overlay I (1.2- 11, except the statement conversion area
(1.2-1.1)

0 All remaining variables named in COMMON, except the data
table (2,) and the number of user programs (14. }.

Table 4-1 shows the program information read o r write requirements

and the a rea involved on the system working file (20. } as a function of

the user command and the statement entry mode {16.).

If the system enters the SUPPRESS mode in response to a

SUPPRESS or CARD co,m\mand, the program RST ensures that the state-

ment entry mode is se t to two, that the previous variable count (1. 1 .3)

is set to zero, and that the card status { 1.1,4) is set to one for a

SUPPRESS connmand and to three for a CARD command,

then performs the actions of entry type 1 (see Section 4.3, 1,4).

The program

For all other commands, the overlay status { 3 . 8) is set to one,

the e r r o r indicator { 9. } is set positive, and the active program count

(19.) is set to zero.

EDIT mode, the type of entry to RST (3.4) is set to three and the func-

tions described for entry types 2 and 5 a r e perfor.med. Otherwise, the

type of entry to program RST is set to one and one of two alternate actions

a r e taken depending on the value of the statement count { 18-}: if the count

If the command was NAME and occurred in the

6 5

TABLE 4-1. PROGRAM CONSTRUCTION INFORMTION READ OR WRITE
REQUIREMENTS

Conversational Suppress
Conmand Mode Node E d i t Mode

NAME Read (20.41 Read (20.5)

SUPPRESS Write 120.41 Read {20.51*

END Read C20.41

CARD Write (20.4) Read (20.5)*

*The restored mode i s reprocessed as if it were the mode i n which the
command was entered.

is one, exit f rom RST; if the count is not one, perform functions of entry

type 1 (see Section 4.3.1.4),

4. 3. 1. 3 Entry Types 2 and 5 - These entries indicate that the

The file status word use r program file (21.) may require repacking.

(21.1) is checked.

the file, removing any unused records between programs, resetting the

file status word to zero, and writing the updated pointer to the first

available record (2 1.2) and the updated user program table (21.4) on

the file. If the original

entry was type 5, the functions of entry type 1 a r e performed.

original entry was type 2, the e r r o r indicator (9.) is set positive. For

entry type 2 and an entry to this section after a completion of an editing

function (see Section 4.3. 1.2), the statement count (18. } is checked.

If the value is one, an exit from RST is made; otherwise, the functions

for an entry type 1 a r e executed.

If the fi le is not packed, the program RST packs

The type of entry to RST c3.4) is set to onee

If the

4.3. 1.4 Entry Type 1 - This entry is for normal program and

data initialization.

variable count { 1. 1. 3).

entry mode { 16.) is one, data initialization is performed. This consists

of setting the data table entry count { 10. } to zero, the data storage count

{ 12. } to 604, and the initial values listed under the user data a rea (1.3. 1)

description.

The variable count { 15.1 is set equal to the previous

If the variable count is zero and the statement

If the overlay status (3.8) is two, Overlay I { 1.2- 1) is read from

RST the system working file (20.6) and the overlay status is set to one.

then sets the current program pointer {8.) and the source statement

record count 13.6) to one and the active program count { 19. }, the user

constant count (l l a} , the statement count {18*}, the e r r o r indicator

(9 .
(1. 1.1) to zero.

the previous program count (1. 1.21, and the program count

67

The pointers to the last interpreter instruction generated for the

previous statement (13. } and the current statement (6 , } a r e initialized

to seven. The f i r s t three words of KODE a r e set to 252, 302, and 410,

respectively.

contain names of variables a r e cleared by setting them to zero.

rows used for temporary variables, column five is set to zero and

column four is set to minus one.

mode, unused rows of the data table (2.) a r e set to zero.

required in the variable linkage area (1.1.6) a r e set to zero.

The rows of the variable table (1.2- 1 e 5) which do not

In the

If the system is in the conversational

Entries not

If the system is in the conversational o r SUPPRESS mode, the

heading

ENTER PROGRAM

or

ENTER PROGRAM - SUPPRESSED

is printed on the console typewriter.

(1.2-1.3) is set to all zeros.

Also, the statement index table

4.3.2 Program NAM

In response to the NAME statement, the program NAM stores a

user program which has been entered in the conversational, SUPPRESS,

o r EDIT mode on the use r program file (21. 1. The functions performed

by the program NAM can be grouped into eight tasks,

described below and the program is flowcharted in Figure 4-3.

The tasks a r e

4.3.2.1 Task 1 - Column 2 of the current row of the statement

index table (1,2- 1 3) is placed in form 2.

by the statement count (18, }.
mined by the pointer to the last interpreter instruction generated for the

previous statement { 13. } and by the program branch pointer (1,2- 1,2),

The current row is specified

The value added to column 2 i s deter-

68

VAL I DATE FUNCT I ON

ADD LOAD INSTRUC-
TION TO PROGRAM

ADD E X I T INSTRUCTION
VALIDATE PARAMETER STRING

OUTPUT NAMES OF ANY UNDEFINED VARIABLES
REPROCESS INTERPRETER INSTRUCTIONS :

REPLACE VARIABLE REFERENCES WITH NEW CODES
COMPLETE GO TO INSTRUCTIONS
FOR FUNCTION PROGRAM, REPLACE E X I T INSTRUCTIONS
WITH BRANCHES

COMPRESS PROGRAM, ADJUSTING HEADER
CLEAR LINKAGE WORDS I N HEADER
STORE ON USER PROGRAM F I L E :

PROGRAM I N COMPACT INTERNAL FORM
STATEMENT COUNT
STATEMENT INDEX TABLE WITH COLUMN 2 I N FORM 1
SOURCE STATEMENTS FROM SYSTEM WORKING F I L E
UPDATED FIRST AVAILABLE RECORD POINTER

PLACE STORAGE INFOR TIOM WITH PROGRAM NAME I N
STATEMENT CONVERSION AREA

FIGURE 4-3, PROGRAM NAM

69

4.3.2.2 Task 2 - The NAME statement is passed to NAM from

subsystem 2 in state 1 of the statement conversion a rea { 1.2-1.1) with

the following information in the indicated locations:

Subscript- in KODE C ont ent s

511
5 12
513, 514, 515 Program name (2 characters per word)
5 16 Unused
5 17

Internal code for NAME label
Variable internal code or zero

Beginning of argument list,

If KODE (512) is not zero, the user has defined a function program by

using a program name which is also a variable name.

the internal code for the variable.

verified that the variable i s defined in the program.

instruction (see Table 2-4) with the variable as the operand is added to

the program interpreter instructions area { 1.1.5) e

This word contains

If the program is a function, it is

A load accumulator

4.3.2. 3 Task 3 - The instruction to exit from the program is

added to the interpreter instruction a rea { 1. 1.5).

4.3.2.4 Task 4 - If the user declared an argument list in the

NAME statement, the parameter string begins in KODE (517) and i s a

mixture of internal codes for variables (see Section 4.4.2.2) and

delimiters in AMTRAN character codes (see Table 4-2), The parameter

string must be enclosed in parentheses; the variables must be separated

by commas; and the string must end with period - eof. The parameter

string is scanned and the variables a r e assigned new internal codes in

the order in which they occur; the first variable is assigned the number

401.

4, 3,2. 5 Task 5 - The entries in the variable table { 1.2- 1. 5)

which a r e not referenced in the parameter string a r e checked to deter-

mine if they appear to be undefined (column 4 is zero and column 5 is

negative). The names of all undefined variables a r e printed on the

typewriter.

assigned new internal codes beginning with the first 400 number after

the parameter variables (see Section 4.3.2.4). Next, new 400 codes

beginning with the next sequential number a r e assigned to any

temporaries used by the program (column 4 is one).

A l l entries not referenced in the parameter string a re

4. 3.2.6 Task 6 - Al l of the interpreter instructions { 1. 1.5)

generated for the program a r e reprocessed.

pointer (6 ,) provides the location of the last instruction, In the repro-

cessing, all variable codes a r e replaced with the newly assigned codes.

This makes all variable and temporary references contiguous numbers

beginning with 401. A l l branch instructions a r e completed. When a

forward branch is entered in the SUPPRESS mode, subsystem 2 replaces

the statement number with 449 plus the row for that statement number in

the statement index table { 1. 2-1. 3) (see Section 4.4.3. l), The program

NAM replaces this reference number with the correct displacement to

accomplish the branch.

except the las t a r e replaced with branches to the load accumulator

instruction added in task 2 (see Section 4, 3.2.2).

The last instruction

If the program is a function, all exit instructions

4.3.2.7 Task 7 - The program is packed by removing unused

positions in the interpreter instruction a rea { 1.1 I. 51, variable linkage

a rea (1.1.6),

table { 1. 1.8).

script to access the constants in floating point, an unused word may

occur in the variable linkage area.

three words of the program header are adjusted (see Figure 2- 1).

fourth word of the header is set to the number of parameters detected

by task 4, Words 5, 6, and 7 of the header a r e set to zero.

u se r constants area { 1.1. 7 lp and user program call

Since the user constant a r ea must begin in an odd sub-

A s the program is packed, the f i r s t

The

71

4.3.2.8 Task 8 - The compacted program is written on the user

program file {21.}, beginning at the record specified as the next avail-

able (2 1.2). The statement count { 18. } is written on the file behind the

program.

entries i s written next with column 2 converted back to form 1.

source statements for the program a r e transferred to the program file

from the system working file (either (20. l), (20.2), or (20.3), depend-

ing on the statement entry mode (16.)).

packed two characters per word.

updated on the file.

program control table (21.4) is entered in KODE in the three words

following the program name (see Section 4. 3.2.2).

to the program RST (3.4) is set to three.

That portion of the statement index table { 1.2- 1.3) containing

The

The source statements remain

The first available record (21.2) is

The file storage information required for the

The type of ent’ry

4.3.3 Program EDT

Program EDT, shown in Figure 4-4, initializes the statement

index table (1 e 2- 1. 3) and several indicators and counters in preparation

for editing a user program. Subsystem 2 recognizes the EDIT command,

locates the program to be edited on the program file (21.}s and provides

the following information to program EDT:

o EDIT statement in state 1 of statement conversion a rea
{ 1.2-1.1)

0 Working register (4-2) - set to displacement relative to KODE
(510) at which the scan for statement numbers i s to begin

FORTRAN record control (7. ’) - set to the record on the user
program file { 2 1. } which contains the statement count for the
program.

Program EDT sets the active program count (19.) to zero and

reads the statement count and the statement index table from the program

file.

the same format as the numbers in column 1 of the table.

The input string is scanned, converting each statement number to

If the statement

72

SET NUMBER OF ACTIVE P R O G ~ M S
READ STATEMENT COUNT AND STATEMENT
INDEX TABLE FOR PROGRAM FROM F I L E
SCAN INPUT STRING TO VALIDATE NUMBERS
TO E D I T
MARK I N TABLE THE STATEMENTS TO BE
EDITED

KE NEW ENTRIES FOR STATEMENTS TO
BE INSERTED

USER
PROGRAM

SAVE CURRENT MODE PROGRAM
CONSTRUCT I ON I N FORMAT ION

TRANSFER STATEMENT TABLE TO COMMON

SET:
POINTER FOR USER PROGRAM F I L E
POINTER FOR SYSTEM WORKING F I L E
POINTER TO LAST STATEMENT EDITED
PREVIOUS VARIAB
STATEMENT COUNT
STATEMENT ENTRY

OUTPUT E D I T HEADING

73

number appears in the table, the sign of the corresponding entry in

column 2 (which is the source statement length) is reversed to indicate

the statement is to be edited. If the statement number does not appear

in the table, but is within the number range, a new entry i s inserted

into the table, keeping the statement numbers in sequential order.

corresponding entry in column 2 is set to zero.

The

After completion of the scan, the statement entry mode { 16. } is

checked.

mode, the following program construction information for the current

mode is stored on the system file (20.5-1):

If the system is currently in the conversational or the SUPPRESS

e Program construction area (1.1)

e Overlay I { 1.2- l}, except the statement conversion a rea
{ 1.2-1.1)

e Al l other variables named in COMMON, except the data table
(2.) and the number of user programs (14.1.

The modified statement index table is transferred to COMMON { 1.2-1.3)

and the following are initialized for editing:

0 Source statement record pointer { 3.2-1) - set to record at
which first source statement begins on the user program file

e Source statement record count (3.6) - set to one

e Pointer to last statement edited (3.3) - set to zero

0 Previous variable count { 1 ~ 1 . 3) - set to zero

e Statement count (18.) - set to zero

o Statement entry mode { 16.) - set to three.

As a final task, the label EDIT is output on the typewriter.

4.3,4 Program DLT

Program DLT, shown in Figure 4-5, makes deletions on the

user program file {2l .) and in the user data a rea { 1.3.1) in response

74

ENTRY ii'

PACK UP REMAINING ENTRIES
UPDATE NUMBER OF PROGRAMS
CHANGE F I L E STATUS WORD

FREE ALL ASSOCIATED
DATA STORAGE AND
TEMPORARY STORAGE

DELETE VARIABLES
SPECIFIED I N
DELETE STATEMENT

FREE LIP ASSOCIATED
DATA STORAGE AN0
TEMPORARY STORAGE

SUBPROGRAM AJS

FREE SPECIFIED

PACK REMAINING ENTRIES
I N VARIABLE TABLE
CLEAR REMAINDER OF TABLE
AND SET VARIABLE COUNT
ADJUST VARIABLE LINKAGE

PACK REMAINING ENTRIES I N
DATA TABLE AND SET ENTRY COUNT

EXIT _1 ADJUST VARIABLE LINKAGE AREA

I SET RST CONTROL' 1 -

FIGURE 4-5, PROGRAM DLT

75

to the commands SAVE, DELETE, SAVE ALL, and END. The commands

a r e recognized by subsystem 2 which sets the type of entry to program DLT

(3.7-1) to one of the following values:

1 - SAVE o r DELETE command
2 - SAVE ALL o r END command.

On a SAVE o r DELETE command, the program DLT will scan the state-

ment string which appears in state 2 of the statement conversion area

{l. 2-1.1) to determine the programs and/or variables to be deleted o r

the variables to be saved.

with variable and/or program references separated by commas which

have internal code 268. The string i s terminated by the number 99.
actual program names appear in the program call table { 1.1.8) b A

program reference code appearing in the input string is 100 plus the

column in the table which contains the program name, Similarly, a

variable reference code is 400 plus the number of the row in the variable

table { 1.2- 1.5) in which the variable name is stored.

The statement string is in internal codes,

The

The user program file (21.) is affected only by a DELETE

statement containing program references.

deleted f rom the user program table (21.4) on the file.

word (21.1) is set to one; the number of user programs { 14.) and c21.3)

is updated; and the type of entry to RST (3.4) is set to four.

The specified programs a r e

The file status

The SAVE ALL and END commands and the DELETE and SAVE

statements containing variable references will cause program DLT to

free up all data storage currently being used for temporary results and

for the system accumulator.

zero entries exist in any of the 30th through 50th positions of the variable

linkage a rea { 1. 1,6) and if a nonzero entry points to a row in the data

table (2 ,) which also has nonzero entries,

accumulator is allocated if the 90th row of the data table is not zero.

When storage is freed by program DLT, the corresponding row in the

data table and the variable link pointing to that row a r e set to zero.

Temporary storage is in use if any non-

Storage for the system

In addition t o temporary storage and the system accumulator,

those variables specified in a DELETE statement are deleted from the

variable table (1.2- 1,5) and the associated data storage is made avail-

able for further use.

table not referenced in a SAVE statement and makes the related storage

available e

Program DLT deletes all variables in the variable

When entries in the variable table a r e deleted, the table is altered

so that the remaining entries a r e in contiguous rows beginning in the first

rowc

maintain the one-to-one correspondence between the variable table

and linkage area.

number of variable names remaining in the table.

Alterations are also made to the variable linkage a rea (1.1.6) to

The previous variable count { 1.1.3) is set to the

When all data storage to be freed has been processed, the entries

remaining in the data table 62.) are moved to the top of the table and the

references remaining in the variable linkage area and the data table

entry count { 10.) a r e adjusted accordingly.

RST (3.4) is set to two.

The type of entry to program

4.4 SUBSYSTEM 2

4.4 , l Pr0gra.m RDLL

The main task of program RDLL is to read AMTRAN source

state,ments. The functions involved, shown in Figure 4-6, can be divided

into thirteen tasks.

indicated,

The tasks a r e executed in order, unless otherwise

4.4.1.1 Task 1 - Program RDLL ensures that Overlay I (1.2-1)

is in corer

file { 20. 6 l p with Overlay I1 (1.2-2) being first written on the system

working file {20,7) if the active program count { 19.) is not zero.

overlay status (3 . 8

If not in core, the overlay is read from the system working

The

is set to one*

ENTRY Q

I F INPUT NOT FROM SYSTEM WORKING F I L E , SAVE
STATEMENT ON F I L E
I F INPUT FROM F I L E , UNPACK STATEMENT
UPDATE F I L E POINTER
REMOVE STATEMENT NUMBER AND BLANKS
BEFORE EACH L I N E I N STATEMENT
SET CHARACTER COUNT, WORKING REGISTERS

SYSTEM
WORKING
F I L E

FIGURE 4-6. PROGRAM RDLL

78

4.4.1.2 Task 2 - This task is performed only if program RDLL

For each is to initiate the input of a use r program from punched cards.

statement, the following a r e done:

Increment the statement count { 18.)

Read set of cards comprising statement

Check that statement number is valid and in sequence and enter
it in column 1 of the statement index table (1.2-1.3) in the row
designated by the statement count.

Remove any trailing blanks from each card image.

Convert the statement f r o m EBCDIC to AMTRAN character
codes checking for illegal characters.
AMTRAN character set and the corresponding character codes.

Perform tasks 10 and 11.

Table 4-2 contains the

The reading of cards is terminated when the NAME statement

has been processed.

one, the statement count { 18.

set to two, and task 4 is then performed.

The source statement record count C3.6) is set to

i s set to zero, the card status { 1. 1.4) is

4.4.1, 3 Task 3 - If an e r ro r occurred on the last statement (the

e r r o r indicator (9 . 1 is not zero), the source statement record count (3.6)

is set back to its previous value using the column 2 entry of that row of

the statement index table (1.2-1.3) specified by the statement count { 18.).

The number of records on the system working file for the source state-

ment is subtracted f rom the record count. The e r r o r indicator (9 .) is

set to zero and task 5 is performed.

4.4,1,4 Task 4 - The last previous instruction pointer { 13e},

previous variable count { 1. 1.33, and previous program count { 1.1.2)

a r e set to the current values, respectively, of the last instruction pointer

variable count (15, and program count { l e l O 1) . The statement

79

C h a r a c t e r

0
1
2
3
4
5
6
7
8
9

Blank
A
B
C

D
E
F

G
n
I
J
K
L
M
N
0

TABLE 4-2. AMTRAN CHARACTER SET AND CODES

Code

0
1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25

- Character

P
Q
R

S
T
U

V
W
X
Y
z
*

¶

9

$
I

End o f Statement
Carriage Return

Code

26
27
28
29
30
31
32
33
34
35.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

-

80

count (18.) is incremented by one.

is not in the edit mode o r the input is not from cards, a message is output,

informing the user that only one more statement may be entered.

If its new value is 45 and the system

4.4.1.5 Task 5 - I€ the previous variable count { 1.1.3) and

variable count { 15. } are not equal, the rows of the variable table { 1.2-

1.5) indicated by the two values a r e set to zero.

4.4.1.6 Task 6 - The variable count { 15.) and program count

(1. 1. 1) a r e set, respectively, to the current values of the previous

variable count (1.1.3) and the previous program count (1. 1.2

4.4,l. 7 Task 7 - This task is performed if the system i s in the

EDIT mode.

statement edited (3. 3) have the same value, indicating an e r r o r occurred

on the last statement and the statement is to be reentered, the statement

number is extracted f rom the row in the statement index table (1.2- 1.3)

specified by the statement count and control goes to task 9. Otherwise,

program RDLL determines the type of entry for the current statement,

depending on the status of the column 2 entry of the current row of the

statement index table.

If the statement count (18. } and the pointer to the last

The entry can indicate the following:

0 Less than zero - the statement is to be reentered by the user

e Equal to zero - the statement i s t o be inserted into the program
by the user

Greater than zero - the statement is not to be changed.

For the first case, the source statement record pointer (3.2-1) is set

to the location on the user program file (21.) of the next source state-

ment by subtracting the table entry from the current value of the pointer.

(The entry is the negative of the length of the current source statement.)

The pointer to the last statement edited (3. 3) is set t o the value of the

statement count { 18.) 9 the statement number is extracted from the

statement index table, and control goes to task 9.

zero, the same actions as described for the first case a r e taken with the

When the entry is

81

exception of incrementing the source statement record pointer.

last case, the source statement is read from the program file at the

place specified by the source statement record pointer.

the statement is specified by the value of the table entry which is added

In the

The length of

to the source statement record pointer after the read.

performed.

Task 11 is then

4.4. 1.8 Task 8 - This task i s performed if the system is not in

the EDIT mode. In the conversational and SUPPRESS modes, the value

of the statement count {18.} is the statement number of the current state-

ment.

statement index table { 1.2- 1.3).

This value is entered into column 1 of the current row of the

4.4.1.9 Task 9 - The statement number is converted to a string

of six characters in the form

where dl , . . . , d4 a r e digits o r blanks which replace only leading or

trailing zeros in the number. The characters, in AMTRAN character

codes, a r e placed in the f i rs t six words of an integer array which is to

be used a s the input a r ray for reading the source statement from the

typewriter keyboard. The program RDLL calls the subprogram KYBRD

to output the statement number, read the source statement, and convert

it to AMTRAN character codes. The length of the statement (stored one

character per word) is returned to RDLL in the working register (5.).

4.4.1.10 Task 10 - Program RDLL adds a blank to the end of

the statement and packs the statement two characters per word, main-

taining the original unpacked form.

entered into column 2 (form 1) of the current row of the statement index

table (1.2- 1.3).

The length of the packed form is

82

4,4.1.11 Task 11 - The packed form of the source ,statement is

written on the system working file in the a rea (either (20, l), {20.2}, or

(20. 3)) specified by the statement entry mode { 16.) and at the displace-

ment in the area specified by the source statement record count (3.6).

The record count is incremented by the length of the packed statement.

If the system is not in the EDIT modee task 13 is performed next.

4.4.1.12 Task 12 - The packed source statement is unpacked

into one character per word.

4 .4 , l . 13 Task 13 - The statement number, occupying the first

six characters, is removed from the source state.ment. For each carri-

age return appearing in the source statement, the next six sequential

characters, which a r e always blanks, a r e rexmoved. The statement is

output in state 1 of the statement conversion a rea (1.2-1.1).

information for program SCA, the length of the statement is placed in

KODE (932), the working register (4,) and KODE (510) a r e set to zero,

and the working register (5.) is set to one.

r

To initialize

4.4.2 Program SCA

Program SCA, shown in Figure 4-7, converts labels appearing

in an AMTRAN source statement to internal codes, recognizing the

special system labels RESET, SUPPRESS, END, NAME, EDIT, CARD,

LIST, and EXPLAIN which require an exit f rom subsystem 2.

The source statement is input to program SCA in state 2 of the

statement conversion a rea (1,Z-1.1).

s t r ing of characters in AMTRAN character codes (see Table 4-2) with

one character per word.

one character at a time,

in the same a r r a y that contains the input state.ment.

The statement appears a s a

Program SCA scans along the string, processing

For compactness, the output string is generated

(This is possible

83

Y

t
v) n

84

since labels compress to one-word internal codes.) To reduce storage

requirements, the working indicators needed by SCA a r e set by program

RDLL (see Section 4.4.1.13).

A s program SCA scans the input string, non-alphabetic characters

a r e t ransferred to the output string, omitting unnecessary blanks. When

an alphabetic character occurs, any additional characters are obtained,

the label is classified, and an internal code representing the label is

placed in the output string.

will be discussed in detail.

string is totally processed o r a special exit is required.

statement has been scanned by program SCA, the output string is placed

in state 2 of the statement conversion area and the following indicators

a r e set for program SCB:

The tasks involved in the label conversion

The scanning process continues until the

When a complete

e Indicator (4-3) - set to the displacement relative to KODE (510)
at which the sta$ement begins

e KODE (933) - set to one

0 Working regis ter (5.) - set to one.

Before any exit, the output parameter f rom program SCA is set to one

of the following values :

1 - continue execution in subsystem 2

2 - route system flow to subsystem 1, entry 1 for normal
initialization

3 - route system flow to program LST f o r processing of LIST
o r EXPLAIN

4 - route system flow to subsystem 1, entry 2 for program
control

5 - route system flow to subsystem 1, entry 2 for program
c ont r ol

85

6 - route system flow to subsystem 4 to output e r ro r message

7 - route system flow to subsystem 1, entry 3 for data a rea
c ont r 01.

When a label has been detected by program SCA, the first six

characters a r e compared with entries in the following four tables, in

the order listed:

0 System label table (22.1)
0 Variable table { 1.2- 1.5)
0 Program call table { 1.1.8 1
0 User program table (21.4).

The labels in each table a r e packed two characters per word.

three tables a r e searched only if they contain entries a s indicated by the

respective values of the variable count { 15. }, the program count { 1.1. l},

and the number of user programs on file (14. }.

program table rather than the program call table is searched when the

label to be matched is immediately preceded by one of the system labels:

LIST, EDIT, or NAME. The first three tables are not searched if the

label contains only one character. Both the system label table and the

user program table a r e stored on file and read into core at the first

occurrence of a label requiring a search of the particular table.

actions taken when a match to the label is found in one of the four tables

and when the label does not occur in any of the tables is described in the

following discus s ion s.

The last

However, the user

The

4.4.2. 1 System Label Table - Table 4-3 shows the contents of

the system label table which is on the system control file (22.) .

first six entries a r e labels for which program SCA must take immediate

action. The 200 numbers are the internal codes to be used for the label

throughout the remainder of subsystem 2 and are 200 plus the interpreter

The

86

TABLE 4-3. SYSTEM LABEL TABLE

Label

RESET
SUPPRESS
END
CARD
TO
ALL

TYPEOUT
LIST

EDIT
NAME
ARRAY
I F
THEN
ELSE

REPEAT
LAST

PAUSE
E X I T

SQ
INTERVALS

GO
DELETE

SAVE
LT

GT

EQ
NE
GE

I n t e r n a l o r
Control Code Label

LE

SUB

21 2

209
1001

1002
1003
701
702
703
704
705
709
706
707
708
709
71 0
275
276
21 3
21 4
21 5
21 6
21 7

INPUT
M I N
MAX
TYPE
ABS
TANH
SUM
TAB
EXPLAIN

SUMF
MAGNITUDE

P I
DEGREES
S I N
cos
LN

EXP
SQRT
ATAN
POW
GO TO
THRU
S H I fT
PUNCH
RANGE

I n t e r n a l o r
Control Code

218
243
204
229
230
71 1
236
237
238
71 3
1004
232
239
397
399
247
248
234
249
250
235
258
21 2
269
223
71 2
701

87

operator code (see Table 2 - 4) for the label.

syste.m constants.

action by program SCB, and the 1000 nu.mbers a r e labels which require

special but not immediate action by program SCA.

The two 300 numbers a r e

The 700 numbers a r e operators which require special

Upon recognition of one of the six labels which appear first in the

table, the described actions a r e taken:

0 RESET: Set the statement entry mode { 16. } to one and the
previous variable count { 1.1.3) to zero; exit to subsyste,m 1,
entry 1.

0 SUPPRESS: Set the type of entry to RST (3.4) t o four; exit to
subsyste-m 1, entry 2.

0 END: When entered in the conversational ,mode, set the type
of entry to DLT C3.7- 1) to two; exit to subsystem 1, entry 3.

When entered in the SUPPRESS or EDIT mode, take the same
actions a s for SUPPRESS.

0 CARD: Take the same actions a s for SUPPRESS.

0 TO: Replace with a blank the code for the label GO, which is
in the output string; enter the code for TO in the output string;
continue processing the statement.

0 ALL: If preceded by the label LIST, set the type of entry to
pr0gra.m LST (3.10-l}; exit t o program LST.

If preceded by the label EXPLAIN, set the output entry number
(3.9-1) to 39; set the type of entry to program LST (3.10-1)
to zero; exit to program LST.

If the label matched is not one of the first six entries in the

system label table, the number provided in the table (column 4) is placed

in the output string.

EXPLAIN, pr0gra.m SCA sets the type of entry to pr0gra.m LST { 3,10- 1)

to zero and the output entry number C3.9-1) to the position in the table

(the row number) of the label just located and exits to program LST.

If the system label is preceded by the operator

88

If the system label is TYPEOUT, program SCA places the

TYPEOUT code in the output string and locates the first prime, which

is the beginning delimiter for the message.

following the prime, the message is packed two characters per word and

placed in the output string, beginning in the second word af ter the TYPE-

OUT operator.

encountered, packing a blank in the last half word if required.

count is stored in the output string immediately behind the TYPEOUT

operator.

Processing of the input statement is continued, starting with the first

character after the closing prime.

Beginning with first character

The packing is continued until the terminating prime is

A word

The count is the number of words required for the packed form.

4.4.2.2 Variable Table - Program SCA searches the labels

currently entered in the variable table { 1.2-1.5) to determine if the

label is a variable name. The number of rows t o be searched, beginning

with row one, is specified by the current value of the variable count {15*}.

When a match is found, the corresponding variable reference number is

entered in the output string.

of the row containing the variable name.

preceded by the operator NAME, the packed variable name followed by

a blank in AMTRAN character code is placed in the next four words of

the output string following the variable reference number.

The reference number is 400 plus the number

If the variable is immediately

4.4.2.3 Program Call Table - The current value of the program

count { 1.1.2) determines the number of columns, beginning with column

one, in the program call table { 1. 1.8) which a r e searched.

corresponding program reference number is placed in the output string

upon a match.

column containing the program name.

The

The reference number is 100 plus the number of the

4.4,2.4 User Program Table - The number of rows in the user

program table (21.4) searched, beginning with row one, is specified by

the number of programs stored on file { 14.). When a match occurs

89

and the label is not preceded by one of the special system labels, i. e. ~

LIST, EDIT, o r NAME, and the system is in the conversational o r

SUPPRESS mode, the program count (1.1.2) is incremented, the pro-

gram name is entered into the corresponding column of the program

call table {1.1.8}, and the program reference number which is 100

plus the program count i s entered into the output string.

actions a r e taken if the system i s in the EDIT mode and the program

name is not the name of the program being edited. If the names a r e

the same, no action i s taken, a s if a match was not found. The names

a r e the same i f the row in the user program table is the same a s the

location in the table { 3. 1- 1) set when the EDIT was initiated.

The same

If the program name is preceded by one of the special system

labels, the appropriate actions a r e taken:

0 LIST

A Set the type of entry to LST { 3. 10- 1) to the length of the
source form of the program.
from column 6 of the program table.

The length is obtained

A Set the LIST control 13.9-2) to the record number on the
user program file (22 .) a t which the internal form of
the program begins.
of the program table.

The record number is in column 4

A Exit, routing system flow to program LST.

0 EDIT

A Set the program table location (3 . 1-1) to the row in the
program table containing the program namee

A Set the FORTRAN record control {7.} to the record on
the user program file (22. } which contains the program
statement count. The record number is in column 5 of
the program table.

Exit, routing system flow to subsystem 1, entry 2.

90

0 NAME (valid only in EDIT mode)

P Place a zero, the three word program name, and an
AMTRAN character coded blank in the next five words
of the output string.

A Continue processing the input statement.

4.4.2.5 Label Not Appearing in Tables - When a label has not

been matched with an entry in one of the four tables, it is entered in

the variable table { 1.2-1.5).

the label is entered in the corresponding row of the variable table, and

the variable reference number (400 plus the variable count) is placed

in the output string.

The variable count { 15. } is incremented,

4.4. 3 Program SCB

Program SCB completes the conversion, initiated by program

SCA, of an AMTRAN source statement f rom a string of characters to

a string of internal codes. Program SCA has already converted label

strings to internal o r temporary codes. Program SCB scans the input

statement and converts the remaining digital and special characters to

internal codes; performs special formatting for the operators ARRAY,

PAUSE, REPEAT, EXIT, SQ, INTERVALS, TYPE, PUNCH and TAB,

and for the IF statement; and recognizes the data control commands

DELETE and SAVE upon completion of the statement conversion.

The partially converted statement i s input to program SCB in

state 2 of the statement conversion a rea { 1,2- 1. l), The displacement

relative to KODE (510) at which the statement begins is provided in the

working register { 4-3). For convenience, two indicators, KODE (933)

and the working register { 5 @ } # used by program SCB have been initial-

ized by program SCA to oneo

The fully converted statement is output in state 3 of the statement

conversion a rea (1.2-1, 1).

parameter which is set to indicate one of the following:

In addition, the program SCB outputs a

9 1

1 - Continue statement translation.

2 - Route system flow to subsystem 1, entry 3 for processing
of a DELETE o r SAVE statement.

3 - Route system flow to subsystem 4 for output of an e r r o r
me s sage.

The input string is a mixture of the following AMTRAN charac-

ter, internal, and special codes:

0 All character codes listed in Table 4-2, except those for the
alphabetic characters

0 Program and variable references (numbers in the ranges
101 through 110 and 400 through 429, respectively)

e The operator and special codes listed in Table 4-3 (numbers
in the ranges 201 through 269 and 701 through 713, respec-
tively)

The ouput s t r ing consists of numbers in the range 99 through 494

which have the following designations :

99 ; end of statement
101 - 110 : program references
201 .. 269 : operators and delimiters
301 - 355, 386 - 399 : constant references
400 - 430 : variable references
450 - 494 : statement references.

The program and variable reference numbers a r e assigned by

program SCA and explained in the description of that program (see

Section 4.4.2).

corresponding internal codes.

numbers a r e generated by program SCB and a r e discussed in the

following program description,

Table 4-4 lists the operators and delimiters and their

The constant and statement reference

92

Code

201

20 3

204

205

206

207

209

21 2

213

21 4

21 5

21 6

21 7

218

222

223

229

230

231

232

234

235

236

-

TABLE 4-4. OPERATOR AND DELIMITER CODES OUTPUT
BY PROGRAM SCB

O p e r a t o r o r
D e l i m i t e r

E X I T

PAUSE

INPUT

TYPE

PUNCH

TAB

TY PEOUT

GOT0

LT

GT

EQ

NE

GE

LE

ARRAY

SHIFT

M I N

MAX

INTERVALS

SUMF

LN

ATAN

ABS

Code

237

238

2 39

241

242

243

247

248

2 49

250

25 1

258

259

260

26 1

262

26 3

264

265

266

268

269

275

276

-
O p e r a t o r o r

D e l i m i t e r

TANH

SUM

MAGNITUDE

THEN

ELSE

SUB

S I N

cos
EXP

SQRT

NE GAT1 ON

EXPONENTIATION

*

I
+
- (SUBTRACT)

9

THRU

DELETE

SAVE

93

The input elements can be grouped into the following types:

Type Elements

1 Digits zero through nine
2 Operator TY PEOUT
3 Program references, variable references and all

4 Relational operators
5

6 Special characters.

operators not of types 2, 4, and 5

Operators which require special formatting (those
numbers in the range 701 through 713)

The processing of the input elements is shown in Figure 4-8 and

described in the following discussions.

4.4. 3. 1 Type 1 - When a digit occurs in the input string, the

If the element last element entered into the output string is checked.

is the GO TO operator (code 212), the digit is part of a statement num-

be r which can appear in the input string in any of the forms listed below

where d represents a digit and is set to one in the examples in paren-

thes e s.

d ,(I) dd.d (11. 1)
d. (1.) dd. dd (11. 11)

dd. (11.) .dd (. 11)

The statement number is replaced by a statement reference

dd (11) . d (0 1)

which is 449 plus the number of the row in the statement index table

{ 1.2-1. 3} which contains that statement number.

sational mode and in the SUPPRESS mode with typewriter input, the

statement number is also the row number.

when input is from cards, the table must be searched to determine the

row number.

In the comver-

In the EDIT mode and

94

ENTRY a
C L A S S I F Y F l R S T

LOCATE STATEMENT I N STATEMENT INDEX

REFERENCE NUMBER I N OUTPUT

.)
CONVERT D I G I T A L STRING TO NUMERIC CONSTANT I ENTER CONSTANT I N CONSTANT AREA I F REQUIRED,
INCREMENT CONSTANT COUNT

PLACE CONSTANT REFERENCE I N OUTPUT STRING

A .,-- I TRANSFER CODE TO OUTPUT STRING ._ . .

FOR VARIABLES, CHANGE STATUS AS
REQUIRED

ADD CODES TO OUTPUT STRING FOR SPECIAL

PERFORM SPECIAL FORMATTING

PROCESS VARIABLE TABLE

PROCESS VARIABLE TABLE

COMPLETE ANY SPECIAL FORMATTING AS
REQUIRED

PLACE 99 I N OUTPUT STRING

VAL IDATE USE

SET OUTPUT
PARAMETER

FIGURE 4-8. PROGRAM SCB

95

When the first digit in a string is not preceded by the GO TO

operator, the digital string, which may contain a decimal point, is

converted to a constant reference.

range 301 through 354 or the range 386 through 399 and refers to

either a user constant o r system constant, respectively. The digital

string is converted to the corresponding floating point representation,

compared with the system constants { 1.3.21, and replaced by the

corresponding reference, if possible. Table 4-5 lists the system

constants and reference numbers.

number is compared with any constants appearing in the user constants

area { 1. 1.7).

constant count { 11.).

constant reference is 300 plus the row in which the number is entered

in the constant area.

is entered in the next available row in the constant area, the constant

count is incremented, and the corresponding constant reference is

assigned. Al l constants a r e entered as positive numbers. For nega-

tive numbers, the minus sign has already been processed and the

appropriate operator placed in the output string (see Section 4.4.3.6).

The reference is in either the

If it is not a system constant, the

The number of entries is specified by the value of the

If the number does appear, the Corresponding

when the number does not already appear, it

4.4.3.2 Type 2 - In the input string, the operator TYPEOUT

is immediately followed by a word count specifying the number of

sequential words which contain the user message to be output.

operator, word count, and message a r e transferred directly to the

output string -
The

4.4. 3. 3 Type 3 - The elements of this type a r e transferred

For a variable reference, the corre- directly to the output string.

sponding column 4 and column 5 entries in the variable table { 1.2-1.5)

a r e summed,

sum is negative, the entry in column 4 i s set to zero.

If the sum is positiver no action is taken, When the

If the sum is

96

TABLE 4-5. SYSTEM CONSTANTS AND REFERENCE NUMBERS

Cons tan t

0.0
1 .o
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
3.1415927
57.2958
0.01 74533

Reference

386
387
388
389
390
39 1
392
393
394
395
396
397
398
399

97

zero, the element preceding the variable reference in the output string

i s checked. If the element is INPUT (code 204), the columns 4 and 5

entries a r e set to one; otherwise, the column 5 entry i s set to minus

two.

4.4.3.4 Type 4 - The processing of a relational operator is part

of the special formatting performed for an IF tes t (see Section 4.4.3.5).

Program SCB places the following elements in the output string in the

order listed: right parenthesis, subtract, left parenthesis. The rela-

tional operator is inserted in the output string before the first relational

argument (see Section 4.4.3.5).

4.4. 3. 5 Type 5 .. The operators of this type, with the exception

of INTERVALS, require the addition of codes to the output string to

simplify the next phase of the translation processs

program SCB determines whether the label is used as a subscript

argument or as a function operator by checking the last element in the

output string.

and 269, respectively), subscripting is the use and a 400 is placed in

the output string. Otherwise, INTERVALS as a function operator (code

231) is placed in the output string.

For INTERVALS,

If the last ele-ment is either SUB or THRU (codes 243

The formatting for PAUSE, EXIT, and SQ is done immediately.

The operator codes for PAUSE and EXIT (see Table 4-4) a r e placed in

the output string and followed by the dummy variable reference number

400. Operator SQ is replaced by the codes for the string: POW 2.0.

Operators ARRAY, TYPE, PUNCH, and TAB cannot be totally

reformatted when first encountered. Fo r each, the formatting consists

of enclosing the associated arguments in parentheses. The left paren-

thesis is placed directly behind the operator code in the output string.

The matching right parenthesis is placed in the output string when one

of the following occurs in the input string:

98

0 Semicolon
0 THEN
0 ELSE
0 End of statement

o r when a comma occurs and the following conditions have been met for

the indicated operator:

0 ARRAY - three arguments have been processed.

0 TYPE, TAB, and PUNCH - the secondary parentheses count
i s balanced (see Section 4.4.3.6).

The IF test, whether appearing a s a state,ment or as an embedded

substructure, is reorganized from the general input form

IF a, relation a2 THEN sL, . . . , Sn

to the output form

relation ((al) - (a2)), THEN (SI, e , Sn),

ELSE (ti, 0 . tm)

where

relation - one of the relational operators

a1 and a2 - the arguments for the relation

s1 . e . , sn and t,, a . . , tm - the substatements comprising the
THEN and ELSE clauses, respectively;
n and m may be one or greater.

Program SCB keeps count of the number of IF tests which a r e

currently being reformatted in order to correctly delimit embedded

IF tests.

IF test, leaves a one-word gap in the output s t r ing to be filled in with

the relational operator (see Section 4.4.3,4), and places two left

parentheses in the output string.

When an IF operator is encountered, program SCB counts the

99

To keep track of THEN/ELSE pairs and to handle any ELSE

clauses which do not appear in the input statement, the program main-

tains a control table.

the control table.

it is deleted.

required to complete an ARRAY sequence and/or a TYPE, PUNCH, o r

TAB sequence.

string:

When a THEN occurs, the THEN is entered in

If the last element in the output string is a comma,

To the output string a r e added any right parentheses

The following sequence is then placed in the output

0 Right parenthesis
0 Right parenthesis
0 Comma
0 THEN
0 Left parenthesis

When an ELSE occurs and the last entry in the control table i s an ELSE:

0 Remove the ELSE and the matching THEN from the table.
0 Decrement the IF test count.
e Place a right parenthesis in the output string.

This sequence i s continued until a THEN is the last entry in the control

table.

an ELSE instead of a THEN.

when a semicolon o r an end of statement occurs (see Section 4.4.3.6).

The tasks listed for the THEN operator a r e then performed using

The formatting of the IF test is completed

The REPEAT statement is input in the form

REPEAT n, SI, . . e , Sm

where n i s the number of times the substatements sl, . e e , sm a r e to be

executed. Program SCB places the statement in the form

R = 0, R = R t 1, LE (R - (n)),

where R refers to a special temporary variable (code 430) which is

used only in REPEAT statements and for counting the execution loops;

100

zero (0) and one (1) a r e system constants (codes 386 and 387, respectively);

LE is the relational operator less than; and the number 355 is a dummy

reference number used only in REPEAT.

occurs in the input string, the codes for the following sequence are read

from the system control file (22.2) and placed in the output string:

When the REPEAT operator

0

0

0

0

e
0

0

0

0

0

0

0

0

0

0

Repeat temporary
Equal
Syste.m constant 0.0
Comma
Repeat temporary
Equal
Repeat temporary
Plus
System constant 1.0
Comma
LE
Left par enthe sis
Repeat temporary
Subtract
Left parenthesis.

The formatting is continued when the first comma occurs and is com-

pleted on the end of statement (see Section 4.4.3.6).

4.4.3.6 Type 6 - F o r the following special characters, program

SCB takes the action indicated:

0 Blank, period, carriage return - None : skip to next input
element.

0 Plus sign, slash, ampersand - Place the operator code (see
Table 4-4) in the output string.

e Asterisk - If the next element in the input string is an asterisk,
place the exponentiation operator in the output string and skip
the second asterisk; otherwise, place the multiplication opera-
tor in the output string.

e Minus sign - If the last element entered in the output string is
a right parenthesis, THRU, constant reference, o r variable
reference, place the subtract operator in the output string;
otherwise, place the negation operator in the output string,

10 1

0 Equal sign - Make the first undefined user variable entered
in the variable table { 1 e 2 - 1.5 1 defined: set to one the entry
in column 4 which corresponds to the first negative entry in
column 5; and place the equal in the output string.

Left and right parentheses a r e always entered directly into the

output string. Throughout the processing of a statement, program

SCB checks for parentheses pairs in the input statement to ensure that

the parentheses a r e balanced.

added to a statement by SCB (see Section 4.4.3.5) do not change the

meaning of the statement, a secondary parentheses count is maintained.

The count becomes active on a left parenthesis in the input statement

when the last entry in the output string is either a program reference

o r the operator SHIFT, o r when the second to last entry is one of the

operators TYPE, PUNCH, or TAB. The count is inactive when the

parentheses become balanced within that portion of the string being

currently processed.

In addition, to ensure that the parentheses

The comma is a key delimiter in the refor,matting of the REPEAT

statement and the operators ARRAY, TYPE, PUNCH, and TAB (see

Section 4.4. 3.5).

to occur after a REPEAT operator, the following sequence is placed

in the output string:

When a comma in the input string is the first co,mma

0 Right parenthesis
0 Right parenthesis
0 Comma
0 THEN
0 Left parenthesis.

Also, the status of all current user variables is finalized in the variable

table { l e 2 - l e 5) by setting all negative entries in column 5 to one.

the comma is not the first comma after a REPEAT, the comma is placed

in the output string after adding any right parentheses required for the

ARRAY, TYPE, PUNCH, and TAB operators. The conditions for inserting

the right parentheses a r e detailed in Section 4,4. 3,5,

Lf

102

Upon a semicolon, any right parentheses required for these four

operators a r e inserted and an additional right parenthesis is placed in

the output string.

is an ELSE, the last THEN and ELSE a r e removed from the table. If

the las t entry is a THEN, the THEN is removed from the table and the

following sequence is entered in the output string:

If the las t entry in the control table (see Section 4.4.3.5)

0 Comma
0 ELSE

In either case, the IF count is decremented and the next input element is

checked. If the ele-ment is not a se,micolon, the actions described for a

comma a r e taken.

When the end of statement character occurs, program SCB f i r s t

verifies that the total parentheses a r e balanced.

completes the special formatting for the Type 5 elements.

parenthesis is added to the output string for each of the following oper-

ators which a r e in the process of being formatted:

The program then

One right

0 ARRAY
0 TYPE, PUNCH, o r TYPE
0 IF (may be more than one).

To complete a REPEAT statement, the following sequence is added to

the output string :

0 Comma
0 G O T 0
0 The dummy statement reference number 355
0 Right parenthesis.

In all cases, the status of all variables is finalized by making all entries

in column 5 of the variable table { 1,2-1.5} one, and the termination

code 99 is placed in the output string,

is a DELETE or SAVE, the output parameter is set to two.

If the first element in the string

103

4.5 SUBSYSTEM 3

4.5.1 Program STK

Program STK, shown in Figure 4-9, converts the internal

statement string generated by subsystem 2 to the equivalent post-fix

Polish stack.

conversion a rea { 1.2-1. 1).

ment conversion area.

The input string is provided in state 3 of the statement

The stack is output in state 4 of the state-

The input string and output stack consist of numbers in the range

99 through 494 which have the following designations:

99 : end of statement
101 - 110 : program references
201 - 273 : operators and delimiters
301 - 355, 386 - 399 : constant references
400 - 430 : variable references
450 - 494 : statement references.

The stack generated by program STK is a string in which the

priority of operations is provided by the operational sequence froam

left to right.

leftmost in the string.

immediately precede the operation. The task of program STK is to

scan the input string and reorder it, based on operation priorities, to

generate the output stack.

output stack and a delimiter list which functions as a last-in, first-

out stack.

The operations of highest priority within a ter,m a r e

For each operation, the associated operands

The reordering is accomplished using the

Since only operations a r e reordered, state.ment, constant, and

variable reference numbers a r e transferred to the stack a s they occur

in the input string.

operator is inserted into the string after a constant or variable refer-

ence when the next input element is one of the following:

To remove implied multiplication, the multiply

104

CHECK F I R S T
INPUT ELEMENT

CHECK NEXT ELEMENT
I N INPUT STRING

DUMP OPERATIONS OF HIGHER
P R I O R I T Y FROM D E L I M I T E R L I S T
VALIDATE SUBSTATEMENTS OR

D E L I M I T PARAMETER STRINGS
D E L I M I T SUBSCRIPTS
ENTER OPERATOR OR D E L I M I T E R
ON D E L I M I T E R L I S T

PEOUT, PLACE DIRECTLY ON

FIGURE 4-9. PROGRAM STK

105

0 Constant reference
0 Variable reference
0 Left parenthesis
0 Program reference
0 The operators listed in Table 4-4 with codes less than 258.

Within arithmetic expressions, the order of computation is deter-

,mined by the relative priorities of the operations - the operation of

highest priority being done first, The priority of operations is:

1. Operations within parentheses
2. Functions (such as user ed functions, SIN, ARRAY, etc.)
3. Exponentiation
4. Multiplication
5. Addition and subtraction
6. Relational operations
7. Concatenation.

Program na,mes have been replaced by program references which

a r e in the range 101 to 110, and operations and delimiters have the 200

range numbers listed in Table 4-4.

parallel the inverse order of priority.

terist ic in generating the stack.

list after first I1dumping1' any operation of higher priority from the list

to the stack.

priority a r e also dumped.

Thus, the numbers assigned closely

Program STK uses this charac-

Operators a r e placed in a delimiter

Except for priority levels 2 and 3, operations of the same

Parameter strings a r e placed in the stack preceding the asso-

ciated operator.

addition of matching delimiter pairs.

and the right delimiter has code 272.

the stack and the right delimiter is placed in the delimiter list behind

the operator when a program reference or one of the following opera-

tors occurs:

The parameters a r e blocked off in the stack by the

The left delimiter has code 273

The left delimiter is placed in

ARRAY
0 TYPE
0 TAB
0 PUNCH
a SHIFT.

106

When the parameter string is enclosed in parentheses, the left paren-

thesis is placed in the delimiter list between the operator and the right

parameter string delimiter so that the matching right parenthesis will

eventually dump the right delimiter.

in the stack,

The parentheses do not get placed

Subscripts a r e similarly bracketed. However, the subscript

modification appears behind the variable reference rather than before

it in the output stack.

in the stack when operator SUB occurs and replaces the SUB.

right subscript delimiter has code 270.

The left subscript delimiter (code 271) is placed

The

The operation priority list presented previously is not sufficient

to handle all of the input operators and deli,miters appearing in Table

4-4. In the following discussions, those operators and delimiters which

obviously do not fall into the priority levels two through seven will be

explained.

The label delimiters THEN, ELSE, GO TO, INPUT, TYPE,

PUNCH, TAB, PAUSE, and EXIT, and the noncomputational commands

a r e treated a s having the priority of a functional operator (level 2).

functional operators cannot dump anything in the delimiter list and a r e

simply added t o the list.

The

The operator TYPEOUT is an exception in program STK.

operator TYPEOUT is followed in the input string by a word count which

specifies the number of subsequent words which contain the user message

t o be output.

order directly to the output stack.

The

The operator, word count, and message a r e transferred in

A left parenthesis is entered directly on the list. A right paren-

thesis will dump al l entries on the list until either the matching left

parenthesis o r a subscript delimiter is found. In the first case, the

107

left parenthesis is deleted from the list.

subscript delimiter is placed in the stack.

entered in the stack.

In the second case, the right

Parentheses a r e never

The only entry an equal can dump from the delimiter list is a

The equal is always placed in the delimiter right subscript bracket.

list,

The operator THRU dumps all entries in the delimiter list until

The THRU is then discarded: the THRU a subscript delimiter occurs.

is not placed on the stack o r in the list.

The comma causes everything on the delimiter list to be dumped

until either a left parenthesis o r a parameter string delimiter is encount-

ered. If the parameter string delkmiter is preceded by a left parenthesis

in the list, the parameter string delimiter is dumped to the stack and the

dumping continues. It

is placed in the stack after all dumping has been done i f the co8mma does

not occur inside parameter string delimiters.

The comma i s never placed on the deli,miter list.

The end of statement (code 99) dumps everything from the delimiter

list to the stack. The end of statement is then placed on the stack.

A further task which program STK performs is a validity check

on substate.ments and parameter strings.

the stack is checked

The last element entered in

0 After a comma is processed

0 After everything has been placed in the stack on an end of
statement

0 Whenever a parameter string right delimiter is the next
ele,ment t o be placed on the stack.

The element is checked to ensure that only a program reference

o r one of the following appears a s a substatement:

1Q8

0 EXIT
0 PAUSE
0 INPUT
0 TYPE
0 PUNCH
0 TAB
0 TYPEOUT
e G O T 0
0 A relational operation
0 A THEN o r ELSE clause
0 Assignment.

A parameter is valid i f the last element is not one of the opera-

tions listed above.

4.5.2 Program CDR

Program CDR, shown in Figure 4- 10, generates interpreter

The stack is input as a instructions f rom the post-fix Polish stack.

string in state 4 of the statement conversion a rea (1.2-1. 1).

gram CDR processes the string f rom left to right, generating the instruc-

tions for each operation as it appears.

entered in order into the interpreter instructions a rea { 1.1.51, beginning

at the location specified by the value of the last previous instruction

pointer { 13. }.

generated, the pr0gra.m sets the last instruction pointer { 6. } before

exiting.

statement index table { 1.2- 1.3) in form 2.

fied by the value of the state.ment count { 18.).

The pro-

The generated instructions a r e

Based on this pointer and on the number of instructions

Also, the program places column 2 of the current entry in the

The current entry i s speci-

The input string consists of numbers in the range 99 through 494

which have the following designations:

99: end of statement
101 - 110 : program references
201 - 273 : operators and delimiters
301 - 355, 386 - 399 : constant references
400 - 430 : variable references
450 - 494 : statement references,

The input string can contain the codes listed in Table 4 - 4 for operators

and delimiters (except for SAVE and DELETE) and the codes listed below

for special delimiters.

109

FOR CONSTANT REFERENCES IN P l K l w u W
PARMETER STRING, GENERATE LOAD AND
STORE TO T E H R A R Y

GLWERATE R E W I R E D INSTRUCTIMI AM
PARAMETER STRING

AS REQUIRED GENERATE STORE TO T E M P O W Y
AND PLACE TEWORARY IN STACK

WORD COUNT AN0 HESSAGE

GENERATE :

-
STORE TO TEIIWRARV

PLACE TESPORARY IN STACK

I I
I

GENERATE F U N C T I M
ItlSTRUCTION U I T H ACCUMULATOR 4 AS FOR OPERAND INPUT, TRANSFER IF POSSIBLE VARIABLE

W E
AS REWIRED. GENERATE STORE TO

GENEFATE INSTRUCTIONS:

LOAD REPEAT COUNTER

INSTRUCTION GENERATE0
B w n c n TO THIRD REPEAT?

GENERATE BRANCH
INSTRUCTlON

I F REQUIRED. GENERATE LOAD INSTRUCTION FOR
FIRST ARGWlENT
GENERATE BIMRY OPERATOR l N S l R U C l l O N WITH

GENERATE STORE TO TEWORARY
PLACE TEMPORARY I N STACK

I F REQUIRED. GiNERlTE LOAD INSTWJETION

GENERATE STORE INSTRUCTION U l T H SUB-
SCRIPTING I F SPECIFIED

..

INSTRUCTION

LS REWIRED. COWLETE BRANCH INSTRIXTIOHS

I F POSSIBLE. GENERATE FREE TEMPORARY INSTRUCTION
PACK IIISTRUCTIONS AN0 PLACE I N INSTRUCTION AREA

SET INSTRUCTION WINTERS

FIGURE 4-10. PROGRAM CDR

110

Code D eli.mit e r

270 right subscript
271
272 right para,meter string
273 left parameter string

left sub s c r ipt

The elements of the input string m a y be grouped into classes which

reflect the functions required to generate the equivalent interpreter instruc-

tions. The twelve classes a r e listed below.

Class

1

2

3

4

5

6

7

8

9

10

1 1

12

Elements

Constant references, variable references, left and
right para,meter string delimiters, and the left sub-
script delimiter

The operations which have parameter strings enclosed
in deli,miters:

0 Program references
0 TYPE
0 TAB
0 PUNCH
0 ARRAY
0 SHIFT

The operator TYPEOUT

Right subscript delimiter (code 270)

The following operators which have only one operand o r
a r e preceded by a dummy operand: EXIT, PAUSE, INPUT,
MIN, MAX, INTERVALS, SUMF, LN, ATAN, ABS, TANH,
SUM, MAGNITUDE, SIN, COS, EXP, SQRT, and negation

The operator GO TO

The relational operators

THEN and ELSE

Binary arithmetic operators

Equal

Comma

End of statement

111

The program CDR moves along the string, generating the instruc-

tions required to perform each operation and to store any results.

result replaces the operation and operands in the stack.

tion which does not generate a result, the operation and associated operands

a r e removed from the stack.

eomplet ely pr oc e s sed.

The

For an opera-

This process continues until the stack is

The format for all interpreter instructions is described in Table

2-4. Constant, program, and variable references a r e input to program

CDR in the final form required for the instructions.

a r e in the range 201 through 263.

200 is subtracted from the operation codes.

in instructions.

However, operations

Before the instructions a r e finalized,

The delimiters do not appear

In addition to generating the instructions which correspond directly

to the operations in the input string, program CDR generates load and

store interpreter instructions and assigns temporary variables.

internal codes which refer to temporary variables a r e variable reference

numbers in the range 431 through 450.

ning with 431, and reassigned for reuse a s soon as possible.

this assignment, program CDR maintains a temporary count which will

be referred to in the discussions on the various input element classes.

The count is initialized to 430 and is incremented by one before each

assignment.

for further use; however, the count is not allowed to drop below 430.

The

They a r e assigned in order, begin-

To perform

The count is decremented as a temporary becomes available

4.5.2.1 Class 1 - The constant and variable references and

delimiters comprising this class a r e not processed until the associated

operand occurs.

4.5.2.2 Class 2 - To process an operation which is preceded by

a parameter string, the input stack is searched backwards from the opera-

tion until the left parameter string delimiter is located. If the operation

112

is a program reference, for each element in the s t r ing which is a constant

reference, the program generates a load and a store instruction (see

Table 2-4) with the constant reference and a temporary variable for the

respective operands

is replaced with the temporary variable reference.

eter string delimiter is located, the program generates the appropriate

instructions, which are described in Table 2-4.

placed in subsequent words in the order in which they occur in the string

from left to right, As each temporary variable reference is transferred,

the temporary count is decremented.

The constant reference in the parameter string

When the left param-

The parameters a r e

When the parameter transfer is completed and either a TYPE,

TAB, o r PUNCH is being processed, the operator and its parameter o r

parameter,s a r e removed from the stack: the stack is compressed

removing the elements, beginning with the left parameter string delimiter

and ending inclusively with the operator.

For the operators ARRAY and SHIFT and a program call, a store

to temporary instruction is generated after the last parameter word. The

temporary reference replaces the operation or program reference, asso-

ciated parameters, and the two parameter string delimiters in the stack.

4.5.2. 3 Class 3 - The operator TYPEOUT is followed in the stack

by the word count which specifies the number of subsequent words in the

stack occupied by the message to be output. The TYPEOUT instruction

is generated, leaving the message words in order.

pressed, removing the operator, word count, and message.

The stack is com-

4.5.2.4 C l a s s 4 - F o r a right subscript delimiter, program

CDR determines whether a variable is being subscripted to the left of an

equal sign. If the delimiter is not beyond the fifth entry in the stack and

if the second entry is a left subscript delimiter, the variable is to the

left of an equal sign. In this case, the delimiter is not processed.

113

Otherwise, program CDR generates a load instruction fo r the variable

whose reference number immediately precedes the left subscript delimiter.

The subscript o r two subscripts a r e transferred to the subsequent instruc-

tion word o r words.

the temporary count is decremented.

to temporary instruction and this temporary reference replaces the vari-

able reference and parameter string with delimiters in the stack.

For each subscript which is a temporary reference,

The program then generates a store

4.5.2.5 Class 5 - To process the functions which have a single

operand, program CDR checks the last instruction generated. If the

instruction is a store and the store operand is the same as the function

operand but is not a temporary reference, the instruction for the function

is generated with the system accumulator as the operand. If the matched

operand is a temporary reference, the s tore to temporary instruction is

deleted before the instruction using the system accumulator is generated.

In all other cases, the operand preceding the function in the stack is used

t o generate the instruction.

For the PAUSE and EXIT instructions, the operator and dummy

operand a r e removed from the stack. Fo r the operator INPUT, the

program locates the variable name in the variable table { 1.2-1.5) and

t ransfers the name to the three words following the INPUT instruction.

The operator and variable reference a r e then removed from the stack.

For the remaining operators of class 5, a store to temporary

instruction is generated after the function instruction.

reference replaces the operator and operand in the stack.

The temporary

4.5.2.6 Class 6 - In the stack, the GO TO operator is immediately

preceded by a statement reference.

of the row in the statement index table { 1.2-1.3) which contains the stor-

age information for the statement to which a branch is made.

number is less than o r equal to the statement count { 18.1, program CDR

The reference is 449 plus the number

If the row

114

determines the beginning location in the interpreter instructions a rea

{ 1 1 e 5) of the statement.

which is in form 2.

instruction is calculated and the instruction i s generated. If the row

number is greater than the statement count { 18. } (this is acceptable

only in the SUPPRESS and EDIT modes), the G O TO instruction is

generated using the statement reference as a temporary operand.

This information is obtained from column 2

From this location, the displacement for the GO TO

The GO TO operator may be preceded in the input string by the

The code signals the end of a REPEAT dummy statement number 355.

statement (see Section 4.4.3.5).

tion with the repeat counter (code 430) as the operand.

then fills in any incomplete branches required for IF tests (see Section

4.5.2.8), making them branch to this load instruction.

then generated to branch to the third word of the instruction sequence

generated for the current statement.

Program CDR generates a load instruc-

The program

A GO TO is

After a branch instruction has been generated, the GO TO operator

and the single operand a r e deleted from the stack.

4. 5.2. 7 Class 7 - For a relational operator, the corresponding

instruction i s generated without an operand.

when the delimiter THEN occurs in the stack.

and the preceding code a r e removed from the stack.

The operand is filled in

The relational operator

4.5.2.8 Class 8 - The THEN and ELSE a r e used in the stack as

delimiters for THEN and ELSE clauses, respectively. They appear at

the end of the clauses. When a THEN occurs, a branch instruction is

generated with a null operand, to be changed when an ELSE occurs.

last relational instruction (see Section 4.5.2.7) is filled in with an operand

based on the displacement f rom the relational instruction to the next

instruction after the added branch.

The

115

When an ELSE occurs, a nonoperative branch instruction is

generated.

the operand is zeroo

to cause a branch to the nonoperative instruction. After the instruction

generation and modification have been completed, the THEN or ELSE is

removed from the stack.

The branch is nonoperative in that the displacement used in

The last branch generated for a THEN is altered

4.5.2.9 Class 9 - In processing a binary operator, program CDR

examines the last instruction to determine whether or not a load instruc-

tion is required for the first operand.

the operand is compared with the f i rs t operand of the binary operator.

(The first operand is the leftmost of the two operands preceding the binary

operator in the stack.) If the operands a r e the same, the load is not

required; and, if the operand is a temporary reference, the s tore instruc-

tion i s deleted. In all other cases, a load instruction is generated to load

the first operand.

becomes a load/free instruction.

binary operator, with the second argument as the operand.

the two operands is a temporary reference, the temporary count is decre-

mented. A store to temporary instruction is generated. The temporary

reference replaces the binary operator and two operands in the stack.

If the last instruction is a store,

If the argument is a temporary reference, the load

The instruction is generated for the

If either of

4,5.2.10 Class 10 - To process the equal, program CDR gener-

ates a load instruction for the operand immediately preceding the equal

unless the last instruction generated is a store for the same operand.

If this previously generated store is a store to temporary, the instruction

is deleted.

The s tore instruction is generated which may or may not require

subscripting.

will be enclosed in subscript delimiters (see Section 4.5, 1) and will

separate the two operands in the stack with which the equal is associated.

If subscripting is required, the subscript o r subscripts

116

The s tore instruction operand is the first in the stack (the one farthest

away from the equal).

and the equal a r e removed from the stack.

The two operands, the subscript string, if present,

4.5.2.11 Class 11 - The comma separates substatements in the

stack and is used to f r ee temporary variables.

all instructions generated since either the las t occurrence of a comma or

the beginning of the statement a r e searched for temporary references.

Fo r each reference found, column 4 of the corresponding row (referenc-

ing is identical t o variable referencing) in the variable table { 1.2-1.5)

is set to one,

of instructions, program CDR generates a f ree temporary instruction.

The instruction has the first temporary (code 431) a s its single argument,

if only this temporary was allocated. Otherwise, the instruction has two

operands.

occurring in the instruction sequence.

The comma and anything preceding it a r e removed from the stack.

When a comma occurs,

If any temporary variable references occur in the sequence

The first argument is the highest temporary reference number

The second operand is always 431.

4.5.2.12 C l a s s 12 - On the end of statement, any branches which

have not been completed (see Section 4,5.2.8) a r e made to branch to the

next instruction to be generated., A f ree temporary instruction is gener-

ated, if required (as explained for the class 11 element). An exit is then

made from program CDR.

4.6 SUBSYSTEM 4

4.6.1 Data Referencing System

Most of the interpreter operators (see Table 2-4) may have operands

which a r e constant or variable references or a reference to the system

accumulator.

mechanism f o r locating data will be discussed in this section.

Since different routines execute these operators, the

117

A constant reference is a 300 number. If the number is in the

range 301 to 354, it refers to a user constant stored in the constant area

of the user program being executed (see Figure 2-1). The rightmost two

digits of the constant reference specify which constant. The execution

routines use the second word of the program header to locate the first

constant and calculate the subscript in a floating point a r ray equivalenced

to KODE a t which the referenced constant is stored.

ence number is in the range 386 to 399, the constant is a system constant

{ 1.3.2).

referenced constant in floating point.

If the constant refer-

The execution routines calculate the subscript to access the

A variable reference is a 400 number. The rightmost two digits

specify which link in the variable linkage a rea of the program (see Figure

2-1) corresponds to the variable.

the second by 402, etc. The execution routines use the first word of the

program header to locate the first variable link.

the variable reference contains a number ranging from zero to 89.

The first link is referenced by 401,

The link specified by

If

the number is zero, the variable is currently undefined (no data has been

assigned to the variable).

defined and the storage information for the variable is in the row of the

data table (2.) specified by the number. The storage information con-

sists of the number of floating point words comprising the data and the

subscript of the first floating point number.

used when accessing the data using a floating point a r ray equivalenced

to the integer a r ray KODE.

a r r ay only for arithmetic computation.

point numbers a r e moved as two-word integers.

mechanism is shown in Figure 4-11.

If the number is positive, the variable is

The subscript is the number

Data i s accessed using the floating point

Throughout the system floating

The variable referencing

The system accumulator is referenced by a zero operand. The

location and length of the system accumulator is contained in row 90 of

the data table {2.). The row contains zeros i f storage is not currently

allocated for the system accumulator.

1 18

4.6.2 Storage Allocation

Within this subsystem, the programs RTN, STV, LSG, and TRG

request changes in storage allocation either to obtain new storage o r to

release storage for further use.

the following a re updated by the programs in subsystem 4:

Whenever storage allocation is performed,

0 Data table entry count { 10. }
e Entries in the data table (2.) affected by the change.

(The storage allocation subprograms update the data storage count { 12, }.)

The updating of the data storage information by the programs in sub-

system 4 will not be repeated in the individual program descriptions.

4.6.3 Program GETOP

The Assembler language program GETOP, shown in Figure 4-12,

unpacks the interpreter instruction specified by the current location (4.).

The instruction is separated into the operator code (3.1-2) and the operand

code (3 . 2 - 2) which are, respectively, in the leftmost seven bits and the

remaining nine bits of the word.

(3.7-2) a r e set.

subclass is set to zero. The operators, classes, and subclasses a r e

listed in the description of subsystem 4 (see Section 3.4) and the operator

codes a r e presented in Table 2-4.

The operator class (5.) and subclass

Where no subclass is specified for the operator, the

4.6.4 Program RTN

The tasks of program RTN a r e to return control from a called

user program to the calling program and to output system e r ro r messages.

The execution of these tasks is controlled by the type of entry to RTN

{ 3.7-3) which indicates the following:

1 - return from user program: execute interpreter instruction
exit

2 - return from all called user programs to conversational mode
program and output e r r o r message

3 - output e r r o r message.

12 0

UNPACK INTERPRETER
INSTRUCTION

SET CLASS AND SUBCLASS

FIGURE 4-12. PROGRAM GETOP

The three entry types a r e described in the order in which they appear in

Figure 4-83. For all entries, the program initially sets the output

parameter to one,

a r e

The possible values and meanings for the parameter

1 - continue execution of interpreter instructions

2 - route system flow to subsystem 2 for reentry of source
statement

3 - route system flow to subsystem 1 for normal program and
data initialization.

4.6,4.1 Entry Type 3 - Program RTN reads that column of the

e r r o r message control table (22.5) specified by the e r r o r indicator { 9. }

to obtain the record number at which the e r r o r message begins and the

number of records on the system control file (22.) occupied by the e r r o r

message.

e r r o r messages a r e listed in Appendix A.

output directly by program RTN.) If the e r r o r is number 54, indicating

the maximum number of program statements have been entered, the

statement entry mode (1 6 ,) is checked.

r

parameter is set to three.

nl9de, the previous mode program construction information (see Section

4. 3. 1 . 2) is restored f rom the system working file (either (20.4) o r {20.5),

The message is then read and output on the typewriter. The

(Error message number 29 is

If the system is in the execute

le, the previous variable count [le 1. 3) is set to zero and the output

If the system i s in the SUPPRESS o r EDIT

If the card status { 1 1 a 4) is two, indicating an e r r o r was

detected during the translation of a program entered on cardss the

statement nurnber is output. The number is obtained from the row

in the statement index table { 1.2- 1.3) indicated by the statement count

(18,).
then restored from the system working file (20.5). For all e r ro r s , if

the statement count is one, the output parameter is set to three; other-

wise, the parameter is set to two.

indicator (9.) is not cleared by program RTN,

The conversational mode program construction information is

It should be noted that the e r r o r

122

ENTRY

1

SAVE ERR09
NUMBER

CLEAR ERROR
INDICATOR

RESTORE PREVIOUS MODE AS

SET PREVIOUS VARIABLE COUNT

SET OUTPUT PARAMETER
I F CARD INPUT, OUTPUT CURRENT

ABLE LINKAGE AREA
RESET DATA ENTRY COUNT

REVERSE STATUS OF PROGRAM I N ACTIVE

CLEAR CALLED PROGRAM HEADER

I F REQUIRED, DEFINE ACCUMULATOR

SET CURRENT PROGRAM AND LOCATION TO
CALL ING PROGRAM

FIGURE 4-13. PROGRAM RTM

4.6.4.2 Entry Type 2 - Program RTN saves the e r r o r number

and clears the e r ro r indicator.

a r e performed until the system has returned execution through all the

called user programs to the conversational mode program in the pro-

gram construction a rea { 1.1) (until the current program pointer (8. }

is one). The e r r o r indicator is then restored and all the actions des-

cribed for entry type 3 a re taken.

The functions described for entry type 1

4.6.4.3 Entry Type 1 - When executing an exit interpreter

instruction, program RTN releases all storage in the user data a rea

(1.3.1) which is local to the user program: all storage fo r temporary

variables and variables in the program which a r e not parameters is

released. The data table entry count { 10. } is adjusted accordingly.

The program variable linkage area is set to all zeros so that the pro-

gram can be reexecuted without reading a fresh copy from the program

file.

indicate the program is no longer in the execution chain.

by making the entry in column 2 negative.

program contains the program active number which is the row in the

active table containing the entry for the program. (See Figure 2=1 for

the program structure. 1 The fifth word of the header contains the

active number for the calling program. Using this pointer to the

active table, the current location of the calling program is found.

The fourth word of the called program header contains the location

relative to the calling program header at which execution is continued.

The current prograrn location (8. } is set to the location of the calling

program and the current location (4-1) is set to the current program

location plus the relative location for the return. The fourth and fifth

words of the called program a re set to zero.

not currently assigned, it is set to length one.

The program entry in the active table { 1. 2-2. 1) is changed to

This is done

The fourth word in the user

If the accumulator is

124

4.6.5 Program JMP

Program JMP executes the call to a use r program, The func-

tions of JMP, shown in Figure 4-14., can be grouped into the eight tasks

described below.

order.

Unless otherwise stated, the tasks a re executed in

4.6.5,l Task 1 - If Overlay E (1.2-1) is in core, the overlay,

except for the statement conversion a rea { 1.2-1. l), is saved on the

system working file { 20.6).

Overlay I1 { 1.2-2) is then initialized in core by setting KODE (451) to

one, the active table c1.2-2. 1) to all zeros, and the active a rea pointer

{ 1.2-2.2) to 503. However, when the active program count is positive,

Overlay I1 is restored from the system working file (20.7). The over-

lay status (3 . 8) is set to two.

If the active program count { 19. } is zero,

4.6.5.2 Task 2 - The first operand for a call instruction is a

It is 100 plus the column in the program

Using

program reference number.

call table which contains the name of the program to be called.

the third word of the header (see Figure 2- l) , the program name and

the previous active number a r e located in the program call table of the

calling program. If the previous active number is positive, indicating

the program has been called previously, the program name is checked

with the indicated entry in the active table { 1.2-2. 1).

agree, the active number is current and task 8 is executed.

If the names

4.6.5.3 Task 3 - This task is performed only if there a r e

programs in the active table,

match to the name of the program being requested.

in the active table, task 7 is performed next.

The active table is searched to find a

If the name appears

4.6.5.4 Task 4 - This task is performed only if the user

program requested has not been found in the active table by tasks 2 or

3. The program control table is read from the user program file

21,4) and searched to locate the requested program, The record

125

SET OVERLAY STATUS

I N I T I A L I Z E OVERLAY I I

READ USER PROGRAM TABLE FROM F I L E AND
LOCATE PROGRAM I N TABLE
IF ACTIVE TABLE OR ACTIVE AREA I S FULL,
REMOVE INACTIVE PROGRAMS, AND PACK
PROGRAMS I N EXECUTION AREA, ADJUSTING
TABLE ENTRIES AND POINTER TO NEXT
AVAILABLE LOCATION CHECK NUMBER OF PARAMETERS

ENTER PROGRAM I N F IRST AVAILABLE ROW PASS PARAMETERS, ASSIGNING ROWS I N
OF THE ACTIVE TABLE DATA TABLE AS REQUIRED
INCREMENT NUMBER OF ACTIVE PROGRAMS SET RETURN INFORMATION
READ PROGRAM FROM F I L E AND SET ACTIVE
NUMBER I N PROGRAM

MARK NEW PROGRAM ACTIVE
SET POINTERS TO NEW PROGRAM

FIGURE 4-14. PROGRAM JMP

126

location and the length of the internal form of the program are obtained,

respectively, f rom the fourth and fifth columns of the table.

active table is full (contains ten entries) o r if the program will not f i t

41 core, task 5 is executed.

length plus the active a rea pointer { 1.2-2.2) is greater than 1, 140 which

is the beginning subscript of the data a rea { 1.3).

brought into core, task 6 is executed.

If the

The program will not fit in core if its

If the program can be

4.6.5.5 Task 5 - In this task, programs in the active a rea a r e

packed to provide space for additional programs.

are taken:

The following actions

o Delete all inactive programs from the active table by setting
the entry row to zero.
current execution chain) i f column 2 is negative.

A program is inactive (not in the

0 For each entry deleted, decrement the active program count
0 9 . 1

0 Set the active a rea pointer (1.2.72.2) to 503

0 Move all programs remaining in the execution a rea to the
beginning of the area, removing unused words between them
and updating the active a rea pointer and column 1 of the active
table for each program moved.

4.6.5.6 Task 6 - The program located on the user program

file by task 4 is assigned the active number corresponding to the first

unused row in the active table (1.2-2.1).

f rom the program call table into the third through fifth columns of the

assigned row, column 1 is set to the current value of the active a rea

pointer { 1.2-2.21, and column 2 i s set to minus the length of the program.

The program is read from the user program file into the program execu-

tion area { 1.2-2.3) at the place specified by the active a rea pointer.

This pointer is then incremented to the first word beyond the program.

The assigned active number is entered into the fifth word of the program

header (see Figure 2-1).

The program name is copied

127

4.6.5.7 Task 7 - The active number for the called program is

entered into the program call table of the calling program (see Section

4,6.5.2).

4.6.5.8 Task 8 - This task passes parameters between the

user programs. If parameters were entered in the user program call

statement, they appear as variable references (one per word) in the

words following the call instruction.

appearing is validated by the number specified in the fourth word of

the called program header. Fo r each variable in the parameter list

which has a zero value in the linkage area, the next available row in

the data table (2.) is assigned for future storage, the link is filled

with the row number, and the data table entry count { 10.) is incre-

mented. Parameters a r e passed in order and t o the first variables

(those with lowest variable reference numbers beginning with 401) in

the called program.

sponding link from the variable linkage a rea in the calling program is

set in the next variable link in the called program. After the param-

eter links have been copied, the information required to return to the

calling program is set in the following words of the called program

header:

The number of parameters

F o r each variable in the parameter list, the corre

Word 6 - active number for calling programp obtained from
word 5 of the calling program header except for the
conversational mode program which has active
number zero

Word 7 - se t to the location relative to the program location
(the first word of the calling prograxn header) of
the last parameter in the calling sequence.

The entry for the called program is marked active, the current pro-

gram pointer (8 .) is set to point to the header of the called programo

and the current location (4-1) is set to the value of the current program

pointer plus six.

128

4.6.6 Program STV

Program STV, flowcharted in Figure 4- 15, executes the inter-

preter instruction INPUT (see Table 2-4).

STV is to request entry of the data. The name of the variable to be

defined is in the three words following the INPUT instruction and is

packed two AMTRAN coded characters per word.

reads the EBCDIC table f rom the system control file {22.4), converts

the variable name to EBCDIC, and outputs the variable name of the

typewriter preceded by the word ENTER.

assigned to the variable is located through the variable link to the data

table (2. } (see Section 4,6. 1). If a link does not exist, the next avail-

able row in the data table is assigned to the variable, the data table

entry count { 10. } is incremented, and the link is filled in.

The first task performed by

The program STV

The data storage currently

Program STV uses a modified form of the AMTRAN character

The input to STV codes.

can be on cards o r f rom the console typewriter.

controls the device selection:

Table 4-6 contains the codes used by STV.

Sense switch 15

Switch 15 OFF (down) - typewriter input
Switch 15 ON (up) .. card input.

If the input is on cards, program STV reads an a r r ay from the system

working file (2 2 . 3) containing the EBCDIC codes for the characters

STV recognizes. The

characters are converted from EBCDIC to the codes in Table 4-6 and

the code string is scanned.

Card input is processed one card at a time.

If the input is f rom the typewriter, the entire statement is read

by the subprogram KYBRD.

character codes which STV then converts to the codes in Table 4-6 before

scanning the entire statement.

The output from this routine is in AMTRAN

129

LOCATE VARIABLE STORAGE 1-sysTEM7
I F UNASSIGNED, ASSIGN

OUTPUT "ENTER" AND VARIABLE
NAME

READ EBCDIC TABLE
FOR CHARACTER SUBSET

ADJUST DATA ELEMENT
TO DESIGNATED LENGTH

SET CURRENT LOCATION
SET VARIABLE AND
ACCUMULATOR TO LENGTH

/ I SUBPROGRAM AJS

c
E X I T

ASSIGN ALL POSSIBLE STORAGE TO VARIABLE

SCAN CODE STRING, VERIFYING AND CONVERTING
NUMBERS TO FLOATING POINT
STORE NUMBERS I N DATA AREA
AT END OF ENTRY, FREE UNUSED STORAGE

FIGURE 4-1 5. PROGRAM STV

130

TABLE 4-6 e CHARACTERS AND CORRESPONDING CODES
USED BY PROGRAM STV

Character

0
1
2
3
4
5
6
7
8
9

Blank

¶

E

/

Code

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

-

131

The input to STV is a sequence of numeric constants separated

by commas or blanks.

the exponent is in one of the forms

STV also accepts floating point entries in which

E d
E dd
Edd
Ed
E-d
E-dd

where d represents a digit.

cnaracter codes and convert the numbers to floating point.

The task of STV i s to scan the string of

When the first number has been converted to floating point, al l

available storage, a s indicated by the current length of the variable and

the data storage count { 12. }, is allocated to the variable.

number i s stored as the f i rs t element of the variable.

number is converted to floating point, it is stored in the a rea allocated

for the variable as the next data element.

The converted

A s each subsequent

If an e r r o r is detected while STV is processing a card input, the

program deletes those numbers already stored which appeared on the

current card and requests reentry of the card.

when reading f r o m the typewriter, the last number accepted by STV

and a request f o r reentry of the remaining numbers a r e output.

If an e r r o r is detected

The termination of input is indicated by an eof on the typewriter

and by a double slash (/ /) on cards.

a r e recognized, any storage not used for the variable is returned to

available storage and the entry in the data table (2. } for the variable

is set to the correct length.

When the termination characters

When numbers a r e not input prior to the termination characters,

If storage has been allocated for

The accumulator is set to

the user is terminating an input loop,

the variable, it i s reduced t o length one.

length one.

is set, the current location (4-1) is set t o its value; otherwise, the current

location i s not changed,

If the pointer to the last interpreter branch instruction { 17.)

132

4.6.7 Program WRT

Program WRT, shown in Figure 4-16, executes the class 4

interpreter instructions: TYPEOUT, TYPE, and PUNCH (see Table

2-4 for the operator codes). Program WRT is provided the operator

code c3.1-21, the code for the first operand c3.2-2}, and the current

location (4-1) of the interpreter instruction to be executed.

Fo r each of the class 4 operators, the user selects the output

device using sense switch 0:

Switch 0 O F F (down) - typewriter output
Switch 0 ON (up) - printer output.

F o r TYPE and PUNCH, the user selects the output format using sense

switch 1:

Switch 1 OFF (down) - fixed point format
Switch 1 ON (up) - floating point format.

The operand c3.2-2) for TYPEOUT is the number of words

immediately following the TYPEOUT instruction which contain the

message to be output,

character codes which are packed two characters per word (each

character occupies eight bits).

to execute the TYPEOUT operator:

The message consists of characters in AMTRAN

Program WRT does the following tasks

@ Read EBCDIC table from the system control file 122.4)

@ For each word specified by the word count (the operand (3.2-2))

A Unpack characters
A Place equivalent EBCDIC codes in an output a r r ay
A If a carriage return is encountered, output the a r r ay
A On the last characterp output the a r r ay

CB Set the current location (4- 1] to the last word containing
characters in the message: set to the current location
yipon entry to W R T plus the operand (3.2-2).

133

READ EBCDIC TABLE FROM F I L E
UNPACK CHARACTERS
CONVERT CHARACTERS FROM AMTRAN
TO EBCDIC CODES
OUTPUT MESSAGE ON SELECTED

SET CURRENT LOCATION TO LAST
WORD I N INSTRUCTION

FOR EACH OPERAND:
LOCATE DATA
OUTPUT ON SELECTED DEVICE OR DEVICES
I N THE SELECTED FORMAT, ROUNDING I N
THE 5TH DECIMAL PLACE I F FORMAT I S
F IXED POINT

SET CURRENT LOCATION TO WORD CONTAINING
LAST OPERAND

FIGURE 4-16. PROGRAM WRT

134

The TYPE and PUNCH instructions can have multiple operands

which can be either constant o r variable references.

operand is specified, it may refer to the system accumulator.

each operand, the associated data is located (see Section 4.6.1).

data is then output on the selected device in the selected format.

operator is PUNCH, the data is output on cards as well a s on the printer

or typewriter.

rounded by adding 0.00005 to each.

four significant digits to the right of the decimal point and up to seven

digits preceding the decimal point. Fo r TYPE, eight numbers are

output per line; for PUNCH, six numbers a r e punched per card and

output per line.

format with seven numbers per line or card.

program WRT, the current location (4-1) is set to the word containing

the last operand for a TYPE or PUNCH operation.

When only one

For

The

If the

If the format is floating point, the numbers a r e first

The fixed point output contains

Six significant figures a r e output in the floating point

Before exiting from

The user can suppress or terminate the execution of any of the

three operations by sense switch 13:

Switch 13 OFF (down) - normal execution
Switch 13 ON (up) - terminate execution.

Program WRT checks the status of sense switch 13 and terminates

execution if required.

normal execution had been completed.

The current location {4-1) is always set as if

4.6.8 Program LSG

Program LSG executes the class 5 interpreter instructions

which are grouped into the following subclasses:

1 - load accumulator, load accumulator and f ree temporary
2 - SIN, COS, EXP, SQRT, negation
3 - + r * # / P - e i3z

5 - store accumulator
6 - free temporary.

4 - GO TO, LT, GT, EQ, NE, GE, LE

135

The program i s provided the subclass { 3.7-23, operator (3 . l-2]# first

operand {3.2-2}, and current location 14-11.

eter to one of the following:

LSG sets an output param-

1 - continue normal execution

2 - route system flow to subsystem 1 for normal program and
data initialization

3 - continue normal execution without clearing the branch
pointer { 17.) before executing the next interpreter
instruction

4 - an e r r o r has been detected, output e r r o r message.

Before any operators a re executed, the output parameter is initialized

to one. For each operator, the operand is validated using the operand

requirements listed in Table 2-4.

data must be currently assigned to the operand.

shown in Figure 4-17, a r e described by subclass.

For all operators except the store,

The functions of LSG,

4.6. 8.1 Subclass 1 - For both of the operators in this subclass,

the storage information for the operand is located in the data table (2.)

(see Section 4.6. 1).

instruction, the accumulator i s adjusted to length zero and the entries

in the data table (2.) for the accumulator and the temporary variable

a r e exchanged: the contents of the respective rows a r e exchanged.

For the load accumulator and free temporary

The load accumulator instruction may have one o r two additional

operands which appear in the one word o r two words immediately follow-

ing the load instruction.

value(s) of the operand(s) a r e obtained and the current location (4-1) is

incremented to the word containing the last operand.

operand specifies a subscript in the variable to be loaded (the first

operand).

The subscript or subscripts a r e checked to make sure they a r e in the

If there a r e multiple operands, the actual

Each additional

If two subscripts appear, they specify a range of subscripts,

136

VALIDATE OPERAHO

LOCATE OPERAND

--
SUBPROGW SHF
I

CURRENT LOCATION

IF SYSTEM IS TO BE RESET. SET
PREVIOUS VARILBLE UWNT ANO
SET OUTPUT PARAMETER TO THREE
OTHERYISE, SET OUTPUT PARAMETER
TO T W . SET CURRENT LOCATION AH0 i BRANCH LOC4TION

EXCHLNGE DATA
TABLE ENTRIES

FOR ACCUMJLATOR
AN0 TERORARY

VARIABLE

SUBPROGWVI AJS CHECK DIMENSION COHPATABILITY

ADJUST ACCUMULATOR LENGTH I F ADJUST

PERFORM OPERATION ON DATA AND
ACCWLATOR. PLACING RESULTS IN
ACCUWJLATOR

ACCUWJLATOR

LENGTH

E X I T

SUBPROGWVI AJS
I F OPEQAND IS NOT THE ACCWLATOR.
ADJUST ACCUWJLATOR TO LENGTH OF

PERFOFM OPERATlOH ON DATA. PLkClNG
RESULTS I N ACCUMJLATOR

SUBPROGWVI AJS
ADJUST

ACCUWJLATOR
TO SPECIFIED

LENGTH

I F OPEQAND IS NOT THE ACCWLATOR.
ADJUST ACCUWJLATOR TO LENGTH OF

PERFOFM OPERATlOH ON DATA. PLkClNG
RESULTS I N ACCUMJLATOR

SuBPRoGrUII AJS

FREE
SPECIFIED

STORAGE

AN0 OBTAIN SECOND OPERAND
BEGINNING U I T H SECOND O P W W I . I F PRESENT.
AND ENDING U I T H FIRST OPERAND

RANGE SPECIFIED

FREE UP
ALL STORAGE ASSIGNED TO VARIA~ES IN

I F WJLTlPLE OPERANDS:

SAVE LOCATION OF VARIABLE

OBTAIN ACTUAL OATA VALUES

I F NOT SUBSCRIPTED:
I F ACCWLATOR DATA IS NOT NEEDED I N NEXT
IHSTRUCTION, EXCNANGE DATP. TABLE ENTRIES
FOR ACCUWJLATOR AN0 VARIABLE
OTHERUISE. ADJUST VARIABLE TO LENGTH Of
A C C W A T O R AND TRAHSFER OATA FROM
ACCUWLATOR TO VARIABLE

I F SUBSCRIPTED INSIDE CURRENT LENGTH OF
VLRIABLE. TRANSFER DATA F I W ACCUWLATOR

I F SUBSCRIPTED BEYOND CURRENT LENGTH OF

ALLOCATE TEMPOQARY STORAGE OF LENGTH

I F VARIABLE CURRENTLY OEFINEO. TRANSFER
DATA FROM VARIABLE TO TWPORARV AND FREE
VARIABLE STORAGE
TRANSFER TEHWQARY STORAGE INFORNATION
TO OATA TABLE ENTRY FOR VARIABLE

OF LAST (OR ONLY) s u n s c R w T PLUS ONE

AOJUST
ACCUWLATOR TO SPECIFIEO

TRANSFER
OATA TO

ACCWLATOR

E X I T

FIGURE 4-17. PROGRA

137

current subscript range of the variable.

the system accumulator (row 90 of the data table (2.)) to the length of

the data to be loaded and t ransfers the specified data f rom the variable

storage to the system accumulator.

Program LSG then reallocates

4.6.8.2 Subclass 2 - The operators in this class may have the

system accumulator specified a s the operand,

accumulator, the storage information for the operand is obtained (see

Section 4.6. 1) and the system accumulator is adjusted to the length of

the operand data.

performed in floating point on the data o r accumulator and the result

i s placed in the system accumulator.

If the operand is not the

The individual interpreter operation specified is then

4.6.8.3 Subclass 3 - For the binary operations, program LSG

locates the storage information for the operand.

and of the system accumulator a r e compared.

o r if the lengths a r e not the same but either one has length one, the opera-

tion is valid.

specified operation is performed between corresponding elements. (For

a binary operation, the accumulator is the first operand and the operand

appearing with the operator is the second operand.) If the lengths a r e

unequal and the operand has length one, the operation is performed

between the scalar operand and each element in the accumulator.

the lengths a r e unequal and the accumulator is of length one, each

element in the operand data is operated with the constant after the

accumulator has been expanded t o the length of the operand.

operators in subclass 3, the result is placed in the system accumulator.

The length of the operand

If the lengths a r e the same

If the operand and accumulator a r e the same length, the

If

For all

4.6.8.4 Subclass 4 - For the relational operators in this sub-

class, a branch to a nonsequential interpreter instruction may be

performed, based on the value of the single element in the accumulator.

The following list identifies each relation and the accumulator condition

upon which a branch is taken:

138

LT - positive or zero
GT - negative o r zero
EQ - positive o r negative
NE - zero
GE - negative
LE - positive.

When a branch is taken, the current location (4 -1) is incremented by

the operand minus one.

On the GO TO instruction, the user may terminate execution

and cause a rese t of the system using sense switch 14:

Swit-ch 1 4 O F F (down) - continue execution
Switch 14 ON (up) - reset system.

If a rese t is required, program LSG sets the previous variable count

{ 1 . 1 . 3) to zero and routes system flow to subsystem 1, entry 1 by

setting the output parameter to three.

If a rese t is not required, program LSG does the following:

0 Set the pointer to the last executed branch instruction c17 .1
to the current location (4~1')

0 Set the output parameter to two

0 Increment the current location by the operand minus one i f
the operand is not zero.

4.6. 8.5 Subclass 5 - If a link to the data table (2 .) does not

exist for the variable operand (see Section 4.6. l), the next available

row in the data table a s specified by the data table entry count (10.

assigned to the variable, the entry count is incremented, and the link

is set for the variable in the variable linkage a rea of the user program

being executed.

is

The s tore instruction may have one o r two additional operands,

each specifying a subscript. Program LSG obtains the value of any

139

additional operands. If the variable is not subscripted, program LSG

will exchange the data table entries for the variable and the system

accumulator if one of the following conditions exists:

Storage is not currently allocated for the variable

@ The store instruction is immediately followed by an instruction
in one of the following classes (the classes and subclasses a re
described in the description of the subsystem, Section 3.4):

A Class 2
A Class 3
A Class 5, subclass 1
A Class 6 , subclasses 1 and 4
A Class 7

e The store instruction is immediately followed by an instruc-
tion of one of the following types with an operand other than
the system accumulator

A Class 4
A Class 5, subclass 2
A Class 6 , subclasses 2 and 3
A Class 8

@ The program being executed is in the program. construction
a rea (1.1) (the current program pointer (8. } i s one) and
the current instruction, as specified by the current location
(4- I}, is the last instruction to be executed (6. }.

If the data table entries cannot be exchanged, the amount of storage

allocated for the variable is adjusted to equal the length of the system

accumulator and the data in the accumulator is duplicated in the variable

storage.

If the variable is subscripted and the subscripting refers to an

element or elements currently existing in the variable data, the data in

the system accumulator is transferred to the data element o r elements

of the variable specified by the subscripting.

140

If the variable is subscripted and the subscripting is beyond the

current length of the variable, temporary storage of length equal to the

higher (o r only) subscript is allocated, If storage is currently allocated

for the variable, the data in that storage is t ransferred t o the temporary

storage and the storage assigned t o the variable is freed.

information (location and length) for the temporary is transferred to the

variable entry in the data table.

ferred to the specified element(s) of the variable.

The storage

The data in the accumulator is trans-

4.6.8.6 Subclass 6 - The f ree temporary instruction may have

either one o r two operandso

assigned to the operand is made available for further use.

operands appear, any storage allocated to the two operands and to vari-

ables with reference numbers in the range delimited by the two operands

is returned to f ree storage.

If one operand appearss any data storage

If two

4.6.9 Program TRG

Program TRG executes the class 6 interpreter instructions.

The program is provided the operator code {3,1-2], the f i rs t operand

c3.2-21, the current location (4- 11, and the subclass (3.7-2) which

indicates the following instructions:

1 - ARRAY (RANGE)
2 - MIN, MAX, INTERVALS, SUMF
3 - LN, ATAN, ABS, TANH, SUM, MAGNITUDE

5 - exponentiation.
4 - SHIFT

For a l l operators, program TRG validates the operand according to

Table 2-4.

the method described in Section 4,6.1.

the separate functions shown in Figure 4-18 for the various operators.

The location and length of the operand data is obtained using

Program TRG then performs

4,6, 9e 1 ARRAY - For the ARRAY function, program TRG

obtains the values of the three scalar operands. The system accumulator

41

ENTRY v
OBTAIN LOCATION

ACCUMULATOR

FOR EACH ELEMENT I N THE OPERAND,
DETERMINE THE REQUIRED POWER OF

RAISE 10 TO THAT POWER INSTRUCTION?

PLACE RESULT IN THE ACCUMULATOR

EACH DATA ELEMENT
PLACE RESULT I N ACCUMULATOR

SUBPROGRAM AJS

EXPAND
ACCUHULATOR

TO LENGTH
OF DATA

~

CHECK DIMENSION COMPATABILITY
EXPAND SCALAR ACCUMULATOR I F REQUIRED
PERFORM OPERATION BETWEEN ACCUMULATOR
AND DATA USING 'INTEGER EXPONENT WHERE
POSSIBLE
PLACE RESULT I N ACCUMVLATOR

EXIT

SUBPROGRAM AJS SUBPROGRAM t4OV

ADJUST LENGTH TRANSFER DATA TO SAVE VALUE OF FIRST OPERAND
OBTAIN LOCATION AND LENGTH OF ACCUMULATOR ACCUWLATOR PER-
OF SECOND OPERANO TO LENGTH OF FORMING SHIFT AS
SET CURRENT LOCATION SECOND OPERAND REQUIRED

I

FIGURE 4-18. PROGRAM TRG

142

is set to a length equal to the third operand plus oneo The floating point

numbers a r e generated and stored in the system accumulator: the first

element is set t o the value of the first operand; the las t element is set

to. the value of the second operand; and the remaining numbers a r e

generated a t equal intervals between, a s determined by the third operand.

The current location (4v 1) is updated to the instruction word containing

the third operand.

4.6.9.2 MPN o r MAX - Program TRG obtains the minimum

or maximum value in the operand data.

the temporary register, KODE (1143) and KODE (1144), in the user data

a rea { 1 . 3 . 1) .

minimum o r maximum is transferred to the accumulator.

The selected value is stored in

The accumulator is adjusted to Length one and the saved

4.6. 9.3 INTERVALS - The system accumulator is adjusted

to length one and set t o the length of the operand data minus one.

4,6.9.4 SUMF - The elements in the operand data a r e summed

and the total is stored in the data temporary, KODE (1 143) and KODE

(1 144).

total.

The system accumulator is adjusted to length one and set to the

4.6.9.5 LN, ATAN, ABS, and TANH - The system accumulator

is adjusted to the length of the operand.

applied to each element of the operand and the result is placed in the

system accumulator.

The specified operation is

4,6.9.6 - SUM - The system accumulator is adjusted to the length

of the operand. A running summation is performed on the operand data,

placing each sum in the corresponding position of the system accumulator.

4,6. 90 7 MAGNITUDE - The system accumulator is adjusted to

the length of the operand.

following is computed:

F o r each element x in the operand, the

143

0 if k < OI r = 10 ** (k-1)
if k 1 OI r = 10 **k

where r is the result placed in the system accumulator.

4.6.9.8 SHIFT - The SHIFT operator has two operands. Pro-

gram TRG saves the value of the first operand and obtains the location

and length of the second operand, which is the variable t o be shifted.

The current location {4-1} is incremented by one.

lator is adjusted t o the length of the second operand.

shift is determined using the first operand and the length of the second

operand. 'If the shift is zero o r equal to the variable length, no shift

is performed.

lator.

lator, making the shift part of the transfer.

The system accumu-

The minimum

The variable data is transferred directly to the accumu-

When a shift is required, the data is transferred to the accumu-

4.6. 9.9 Exponentiation .., The length of the system accumulator

and the operand data a r e compared,

accumulator is raised to the power which is the corresponding element

in the operand data.

accumulator is raised to that power. If the system accumulator is a

scalar and the operand is an array, the accumulator is expanded to the

length of the array, the scalar is duplicated in each position of the

accumulator, and the operation is performed. When performing the

operation exponentiation, the number is raised to an integer power rather

than a floating point power whenever possible.

the system accumulator.

If equal, each element in the system

If the operand is a scalar, each number in the

The result is placed in

4.6.10 Program TAB

The. interpreter instruction TAB is executed by this program

which is shown in Figure 4-19.

operand { 3 - 1-2) and the current location 44-13.

The program is provided the first
Program TAB outputs

144

SET MAXIMUM

FOR EACH CYCLE:
OBTAIN LOCATION AND LENGTH OF
REMAINING OR MAXIMUM NUMBER OF
OPE RANDS
FORMAT EACH L I N E AND OUTPUT ON
SELECTED DEVICE (NUMBER OF L I N E S
BEING SPECIFIED BY LENGTH OF
LONGEST OPERAND)

FIGURE 4-19. PROGRAM TAB

145

data in fixed point o r floating point format, depending on the status of

sense switch 1:

Switch 1 O F F (down) - fixed point fQrmat
Switch 1 ON (up) - floating point format

and on the device designated by sense switch 0:

Switch 0 OFF (down) - typewriter
Switch 0 ON (up) - printer.

The program outputs up to seven numbers per line in floating point

format and eight numbers per line in fixed point format.

(seven or eight) is the maximum number of arguments of the TAB in-

struction which a r e processed at once. The program cycles, taking

the maximum number of arguments at a time until all the arguments

have been processed, On each cycle, the location and length of each

operand is obtained and saved. When all o r the maximum number of

operands have been located, the program finds the length of the longest

operand.

current cycle. The program formats each line, taking the correspond-

ing element from each variable to output. When al l the elements of a

variable have been output, blanks a r e output in succeeding lines.

This number

This length is the number of lines TAB will output in the

To format a line, program TAB transforms each floating point

number to the corresponding string of characters in the proper format.

The individual characters are output in EBCDIC code. For each of the

two formats, the transformation i s designed to make the output of TAB

identical to that obtained by a normal FORTRAN write statement.

make the transformation, program TAB uses a character table and a

round off control table on the system control file (22 .3) .

To

The user may skip or terminate the execution of the TAB

instruction using sense switch 13:

Switch 1 3 OFF (down) - normal execution
Switch 1 3 ON (up) - terminate execution.

1 46

Program TAB monitors the status of sense switch 13 and suppresses

execution a s required.

the current location (4-1) is updated by TAB t o point to the word in

KODE containing the last operand for the TAB instruction.

Whether the TAB instruction is executed o r not,

4.7 PROGRAM LST

Program LST, shown in Figure 4-20, executes the user utility

commands: LIST program name, LIST ALL, and EXPLAIN system

label.

2 to indicate the command to be executed

The type of entry t o program LST (3 . 10-1) is set by subsystem

t -

0 -

- -

L%ST program name - set t o the number of records on the
user program file (21.) occupied by the statement count,
statement index table, and the source statements of the
program

EXPLAIN system label

LIST ALL.

For the LIST program function, the FORTRAN record control (7.) has

been set to the record on the user program file at which the statement

count is stored for the program.

The LIST control (3.9-2) contains the beginning record number

on the user program file for the internal form of the program to be

listed. For EXPLAIN, the control (3 # 9-1) points to the row in the

system explanation table (22.7) on the system control file (22 .)

corresponding to the label to be explained.

the program through the following settings of sense switches on the

11 30 console keyboard:

The user has control over

147

.
0 al
I *

w e
3
Y

148

Sense Command(s)
Switch Affected

0 LIST,
IJST ALL,
EXPLAIN.

2

12

13

LIS T
program

LIST ALL

LIS T
program

LIST
progr-0

LIST ALL,
EXPLAIN

Settings

O F F - output on typewriter printer
ON - output on printer

O F F - internal form not listed
ON - internal form listed on printer

O F F - file storage information not output
ON - file storage information output with

program names

OFF - listing only
ON - program source statements punched

on cards

O F F - normal output
ON - output suppressed o r terminated i f

in process.

The actions taken by LST to perform each of the three operations a r e

described below. After completion of the output functions, the e r r o r

indicator (9. } is set to nonzero so that the statement count (18. } will

not be incremented,

of a new source statement.

The system flow goes to subsystem 2 for input

4.7.1 LIST Program Name

To list a program, the source statements a r e read from the

user program file.

The characters a r e unpacked and converted to EBCDIC codes using the

EBCDIC table on the system control file (22.4).

o r end of statement is encountered, an unpacked line is output on the

selected device.

f rom the file and output with the interpreter instructions unpacked into

the operator and operand codes.

Each word contains two AMTRAN coded characters.

As each carriage return

If requested, the internal form of the program is read

149

4.7.2 EXPLAIN System .Label

The row in the system explanation table (22.7) specified by

the EXPLAIN control (3.9-1) is read f rom the system control file.

This provides the record number on the file at which the explanation

begins and the number of records in the explanation.

containing the explanation a r e then read from the file (22.8).

explanation is output in A2 format one line at a time.

separated in the stored explanation by a word containing the special

symbols $$ (the integer equivalent i s 23387).

The records

The

Lines a r e

4.7.3 LIST ALL

The user program table (21.4) is read from the user program

file.

converted from AMTRAN to EBCDIC codes. The labels a r e output in

EBCDIC on the selected device with the program storage information,

if r eque st e d .

The s ix characters in each program name a r e unpacked and

4.8 SERVICE SUBPROGRAMS

4.8.1 Subprogram KYBRD

The Assembler language subprogram KYBRD, shown in Figure

4-21, is called by programs RDLL (subsystem 1) and STV (subsystem

4) to provide the link from these FORTRAN programs to the Assembler

language subprogram TYPAM which cannot be directly called from

FORTRAN and which reads the console keyboard.

is called with one parameter which is the beginning location of the

FORTRAN a r ray into which subprogram TYPAM is to place the input

statement.

accumulator before calling TY PAM.

Subprogram KYBRD

Subprogram KYBRD places this parameter in the machine

150

FIGURE 4-21 SUBPROGRAM KYBRD

151

4.8.2 Subprogram TYPAM

The Assembler language subprogram TYPAM, shown in Figure

4-22, reads a complete AMTRAN source statement from the console

keyboard and outputs the statement on the console printer,

TY PAM, when executed, temporarily replaces the normal interrupt

service routine for the keyboard/printer. On entry to TYPAM, the

interrupt branch address for interrupt level 4 (core location 12) is

replaced with an entry point into TYPAM, The original address is

restored before an exit f rom TYPAM.

Subprogram

The beginning location of the a r ray into which the statement is

to be read is passed to TYPAM in the machine accumulator from sub-

program KYBRD.

characters in this a r r ay and then reads the statement into the remainder

of the array.

RDLL, the six characters a r e the statement number; if the call is from

program STV, the characters a r e blanks.) The statement is placed in

this a r r ay as a string of AMTRAN coded characters, one character per

word.

characters:

Subprogram TYPAM first outputs the f i rs t six

(I€ the subprogram is being called indirectly from program

One character at a t ime is read and checked for the control

0 Carriage return:
0 Ehd of statement: the EOF button on the keyboard.

t he - button on the keyboard

If the character is not one of these, it is output on the console type-

writer and placed in the output a r r ay in AMTRAN character code (see

Table 4-2).

described is taken:

If the character is one of the following, the action

Backspace (the # button on the keyboard) - remove the back-
space and the preceding character f rom the output array

Delete (the $ button on the keyboard) - remove the $ char-
acter f rom the output array.

152

OUTPUT FIRST S I X CHARACTERS I N INPUT
ARRAY
READ AMTRAN SOURCE STATEMENT FROM
KEY BOARD, PLACING CHARACTERS I N ARRAY
I N AMTRAN CHARACTER CODES

READ U N T I L END OF STATEMENT OR 297TH
CHARACTER

SPACE, L I N E DELETE S STATEMENT DELETE,
CARRIAGE RETURN AND END OF STATEMENT
SET REGISTER TO STATEMENT S I Z E

PERFORM TASKS AS REQUIRED FOR BACK-

FIGURE 4-22. SUBPROGRAM TYPAM

15 3

On the carriage return and the end of statement, the program

determines if a $ or a $$ sequence has been entered in the current line,

but not backspaced out, o r if a backspace has been entered.

been entered, indicating a delete line action, the current line (except for

the first six characters) is deleted from the output array and the program

outputs the first s ix characters in the line and rereads the line from the

keyboard. If a $$ has been entered, indicating a delete statement action,

the entire statement is deleted from the a r ray and the program types the

first six characters again and reads the new statement. If a backspace

has been entered on the current line, the corrected line is output on the

typewriter and subprogram TYPAM continues to read the input line. If

none of these conditions exists when a carriage return is entered, the

following tasks a r e done:

If a $ has

0 Enter a carriage return and six blanks in output array

e Output a carriage return and six blanks to the console
typewriter

0 Read a new input line.

The actions caused by the entry of a carriage return a r e also taken

when the seventy-fourth character has been entered in a line.

the end of statement is entered and a $, $$, o r backspace h a s not

occurred in the current line, the read of a source statement is termi-

nated. Before exiting, program TYPAM places a period at the end of

statement in the output array, types a period and s e t s the working

register (5.) to the total length of the statement.

by the entry of the end of statement a r e also taken when the output a r ray

contains 297 characters. However, in this case, the final period is not

placed in the output a r r ay or typed.

When

The actions caused

4 . 8 . 3 Subprogram SERCH

The Assembler language subprogram SERCH, called only by

program SCA (subsystem 2) and shown in Figure 4-23, is used to

154

SEARCH ?ABLE FOR REQUESTED

ROW CONTAINING

FIGURE 4-23. SUBPROGRAM SERCH

155

search f o r a particular label in either the variable table { 1.2- 1.53,

the system label table {22.1), or the user program table 121.4).

following arguments a r e provided through the parameter string to

SERCH in the order listed:

The

o The location in core of the beginning of the table to be
searched

o The number of rows in the table

o The number of rows to be searched, beginning with the first
row.

The label to be located in the particular table is always provided in three

words in COMMON, beginning with KODE (737) .

characters packed two AMTRAN coded characters per word.

in each of the tables a r e in the same format and occupy the first three

columns of each table.

Subprogram SERCH searches the indicated table until either the requested

label is found o r the prescribed number of rows have been searched.

the label is located in the table, the working register (6 ,

number of the row in which the label is entered.

is set equal to zero.

The label consists of six

The labels

(The tables a r e stored in core by columns.)

If

is set to the

W e r w i s e , the register

4.8.4 Subprogram AJS

Subprogram AJS, shown in Figure 4-24, makes changes in the

storage allocation fo r data upon request from the programs in sub-

system 4 and program DLT in subsystem 1.

with three parameters which contain the following information:

The subprogram is called

Parameter Contents

]I Current location of contiguous storage block:
subscript of beginning location in a floating
point ar ray equivalenced to KODE

156

RELEASE CURRENT STORAGE
AND/OR OBTAIN NEW STORAGE
BLOCK, AS REQUIRED
SET F I N A L LENGTH AND

FIGURE 4-24. SUBPROGRAM AJS

157

Parameter Contents

2 Current length of the block: number of float-
ing point words

3 Requested length of the block: number of
floating point words.

The subprogram may be called with parameters 1 and 2 equal to zeros

indicating a new block is to be obtained. The third parameter is zero

if the entire block is to be released. Also, the current and requested

lengths may be the same.

Subprogram AJS adjusts the block to the requested length

which may involve both releasing storage and obtaining new storage.

The first two parameters are changed, respectively, to the following

information prior to exiting from AJS:

Parameter C ont ent s

1 Final location of storage block: subscript of
beginning location in a floating point a r ray
equivalenced to KODE

2 Final length of storage block: number of float-
ing point words,

The subprogram does not move any data.

4.8.5 Subprogram GET

Subprogram GET obtains a block of specified length from the

available storage in the user data a rea { 1,3. 1).

contiguous block to be obtained is provided in the allocation parameter

(3, 10-2).

Subprogram GET sets an output parameter (3.9-3) to one of the follow-

ing values:

The length of the

The length i s the number of floating point words required.

158

< O - e r r o r in storage allocation

0 - a block of the requested length is not available

>O - the subscript in KODE at which the block of the requested
length begins e

The information specifying what storage in the data a rea is

currently available is maintained by the data storage count { 12.1 and

a linkage system in the data area.

which contain the following information:

Each link is two integer words

Word 1 - location of word 1 of next: link (subscript in KODE)

Word 2 - number of contiguous floating point words in the
block beginning with the next link pair; the number
includes the link as one floating point word.

The first link is always stored in KODE (1141) and KODE (1142).

last link in the chain always contains zeros.

the data area, so that each link points to a link in a higher subscript

location. The linkage is initialized t o reflect the initial condition of

one 604 floating point word block in the data area.

The

The links a r e ordered in

The functions of subprogram GET a r e described as four tasks

which a r e shown in Figure 4-25. Unless otherwise stated, the tasks

a r e executed in the order in which they a r e presented.

4.8.5.1 Task 1 - Subprogram GET checks the data storage

count { 12.) to make sure the requested storage is available.

4.8.5.2 Task 2 - Subprogram GET works through the linkage

chain to find the f i rs t storage block of at least the requested size.

such a block is located, subprogram GET adjusts the current linkage to

remove either the entire block o r the requested number of words from

the beginning of the block, The subprogram sets the output parameter

{ 3 . 9 - 3) p decrements the data storage count (1 2 . 1 by the number of

words removed from the available storage, and returns to the calling

When

program,

159

SEARCH LINKAGE FOR FIRST
BLOCK OF REQUESTED OR
GREATER LENGTH

I--
&
A I REMOVE BLOCK OF REOUESTED

LENGTH FROM AVAILABLE STOR-
AGE LINKAGE < SET OUTPUT PARAMETER TO
LOCATION OF BLOCK

SUBPROGRAM L GARB IN0

FIGURE 4-25. SUBPROGRAM GET

160

4.8.5. 3 Task 3 - If a block of large enough size is not located,

the linkage is again followed, looking for any blocks which a r e contiguous.

When two contiguous blocks a r e located, the blocks a r e combined into

one block by removing one link and incrementing the word count in the

appropriate link. If contiguous blocks do not occur, task 4 is executed

next; otherwise, task 2 is executed.

located by task 2, task 4 is then performed.

If the appropriate storage is not

4.8.5.4 Task 4 - Subprogram GARB is called to move all

currently allocated storage into one contiguous a rea and, thereby,

provide one block of available storage of length equal to the data stor-

age count { 12.). Task 2 is then performed,

4.8.6 SubDrog.ram GARB

The Assembler language subprogram GARB, called only by

subprogram GET, moves all currently used storage in the user data

a rea { 1.3. 1) into one contiguous block beginning a t KODE (1145) and,

thereby, provides one block of available storage at the end of the data

a rea and of length equal to the current value of the data storage count

{ 12. }. Subprogram GARB is shown in Figure 4-26.

The data table (2 .) is used t o control the movement of data

blocks.

to find any rows with zero entries in the first column.

of rows is specified by the data table entry count { 10.).

reserved fo r the accumulator is also included in the processing.

of the zero entry rows is counted as already processed,

of the rows a r e then processed using the following algorithm where the

temporary count is first initialized to 573,

A search of the currently used rows of the data table is made

The number

The row

Each

The remainder

Locate that entry in the data table which has the smallest
value in column one greater than o r equal to the temporary
count,

161

USING THE DATA TABLE, MOVE ALL
DATA DOWN I N THE DATA AREA
REMOVING AVAILABLE BLOCKS
BETWEEN DATA BLOCKS AND UP-
DATING ENTRIES I N THE DATA
TABLE

SET AVAILABLE STORAGE LINKAGE

E X I T

FIGURE 4-26. SUBPROGRAM GARB

0 For this entry, move the number of floating point data
words specified by column two from the location specified
by column one to the location specified by the temporary
count.

Set column one to the temporary count.

e Increment the temporary count to the first word after the
moved data.

The first link, KODE (1 141) and KODE (1142) (see Section 4,8.5 for an

explanation of the available storage linkage), is set to the following:

KODE (1141) - subscript in KODE which is the equivalent of
the final value of the temporary count

KODE (1 142) - total number of floating point words available.

The second link (the location i s specified by the f i r s t link) is set to

zeros,

4.8,7 Subprogram FRE

Subprogram FRE is called to release storage in the user data

The two input parameters (3.9-3) and a rea { 1.3.1) for further use.

(3. 10-2) provide the following:

(3. 9-3) - the subscript location in a floating point a r ray
equivalenced to KODE at which the block t o be
released begins

(3. 10-2) - the number of floating point words comprising the
block.

Subprogram FRE moves along the available storage linkage (see Section

4.8,5) until either the las t link or the first link after the block to be

released is located.

newly available block,

The current linkage is adjusted to include the

4,8,8 Subprogram MOV

Subprogram MOV is called to move data within the COMMON

a r ray KODE, Three parameters a r e provided in a call to subprogram

163

MOV.

equivalenced to the integer a r ray KODE.

following information:

Al l of the parameters a r e relative to a floating point a r ray

The parameters contain the

Parameter C ont ent s

1 Subscript location to which data is to be moved

2

3

Subscript at which data currently is stored
(subscript of f i rs t element)

Number of contiguous floating point words to
be moved.

Subprogram MOV calculates the integer subscripts (the actual sub-

scripts in KODE) corresponding to the first two parameters and moves

each floating point word as two integer words.

4 . 8 . 9 Subprogram SHF

Subprogram SHF exchanges entries in the data table (2 * } .

Subprogram SHF is called with two parameters, each of which specifies

a row in the table.

a r e exchanged.

The column 1 and column 2 entries in these rows

4 . 9 FILE INITIALIZATION PROGRAMS

The file initialization programs a r e each executed independently

and must be executed before executing the system.

4 , q . l Program INTL3

Program INTLS initializes the first three records on the user

program file {21.}:

Record Designation

File status (2 1 e 1)
First available record (2 1 . 2)
Number of programs (21.3)

Initial Value

0
580

0.

164

4.9.2 Program ALT5

Program ALT5 initializes all of the system control file (22.)

except the system explanation a reas (22.7) and (22.8).

performs five distinct tasks.

The program

4.9.2.1 Task 1 - The AMTRAN character set i s read from an

input card.

with column one, and a r e punched in the order in which they a r e listed

in Table 4-2.

the EBCDIC table (22.4},

The characters a r e punched one per column, beginning

The characters a r e read in A1 format: the codes become

4.9.2.2 Task 2 - Program ALT5 either initializes o r modifies

the system label table (22. 11, depending on the status of sense switch

10:

Switch 10 OFF (down) - initialize table
Switch 10 ON (up) - modify table.

If the table is to be initialized, it is first set to contain blank

labels: all entries a r e set to 2570 which is the code for two AMTRAN

character coded blanks packed in a single word.

modified, the current table is read from the file.

If the table is to be

The program then reads cards which contain the following

information in the indicated columns:

Columns Contents

1-3 Integer (right justified) specifying row in which
label is t o be entered

6-11 Label (left justified)

20-23 Integer (r ight justified) which is the code to be
entered in column 4 of the table

One card at a t ime i s processed. The label is read in A1 format,

converted to AMTRAN character codes using the table obtained in

165

task one, and packed into three words.

into the table in the specified row.

cards until a negative or zero row is specified.

is then written on the file.

ing tasks a r e not performed.

The label and code a r e entered

The program continues to process

The completed table

If the table was only modified, the remain-

4.9.2.3 Task 3 - The ar ray (22.2) used by program SCB for

reformatting a REPEAT statement is initialized to the sequence: 430,

264, 386, 268, 430, 264, 430, 261, 387, 268, 218, 265, 430, 262, and

265. Each code is placed in one word.

4.9.2.4 Task 4 - The ar ray (22.3) used by programs STV

and TAB is initialized by setting the first four wordsd respectively, to

1, 10, 100, and 1000 and by reading the remainder of the information

from a card. The card is punched with thirty characters and is read

in A 1 format.

used by STV followed by the character $. The characters a r e punched

in the order in which they a r e listed in Table 4-6 and a re read into the

last seventeen words of the array. The remaining thirteen characters

a r e the sequence 0. O O O O O E 00 - and a r e placed in order in the array,

beginning in word 5.

followed immediately by the table obtained in task 1.

The first seventeen characters are the character subset

The completed a r ray is written on the disk,

4.9.2.5 Task 5 - To place the e r ro r messages (22.6) and

control table (22.5) on file, the program reads each message from

one punched card in A 2 format into a forty-word array.

with the fortieth word, the program searches backwards until the

sequence ** is located in the array. This is the end of the e r ror

message. The program places the current record number in the

next row of the table.

program writes the message through the ** on the file, beginning

at the current record number. The record number is then incre-

Beginning

(The record number begins at 601,) The

mented by the length of the message.

entry to be made in the table; however, nothing with be written on

A blank card will cause an

1 66

the disk. When all cards

have been read and the table is complete, the control table (2 2 . 5) is

written on the disk.

The program always reads seventy cards.

4.9.3 Program ALT5A

Program ALT5A initializes the system explanation control

table (2 2 . 7) and explanations (2 2 . 8) on the system control file (22 . }.

The control table is generated as the explanations a r e read

from cards.

and the file control is set to 2212.

consecutive cards.

an odd numbered column to indicate the end of the explanation.

card is read in using a 40A2 format.

image, the program searches backwards to locate the first nonblank

characters.

the following steps a r e done:

The table is first cleared, a word count is set to zero,

Each explanation is punched on

The last card contains a $$ sequence beginning in

Each

Beginning at the end of the card

If the nonblank word does not contain the sequence $$,

0 Transfer the characters to a working a r r ay beginning at the
word count. The trailing blank words a r e not transferred.

0 Place a $$ (integer 23387) in the next word of the working
array.

0 Set the word count to point to the word in the working array
after the $$.

If the card contains only blanks, the entire sequence of blanks i s trans-

f e r r ed to the working array.

preceding words a r e transferred to the working ar ray and the word

count is incremented to the last word occupied in the array.

one of the control table is set t o the current value of the FORTRAN

record control.

tion.

by the record control.

When the $$ sequence occurs, al l of the

Column

Column two is se t to the word count for the explana-

The explanation is written on the file at the record specified

Fifty-six explanations a r e read and processed. The completed

control table is then written on the file.

16 7

4.10 MODIFIED 1130 LIBRARY SUBROUTINES

To include the semicolon in the AMTRAN character set, it was

The necessary to modify the library subroutines HOLTB and EBCTB.

routines a r e the card/keyboard code table and console printer code

table, respectively, and a r e used by the FORTRAN input/output routines.

In the tables, the codes for a percent sign were replaced with the codes

f o r a semicolon.

168

APPENDIX A. ERROR MESSAGE

Table A-1 lists the e r r o r messages output by program RTN in

The e r r o r number is the value to which the e r r o r indi- subsystem 4.

cator (9 .) is set for each error .

number, the programs in the system which detect the particular e r ro r

and se t the e r r o r indicator accordingly. Programs AMTRN, CTL,

ITZ, RST, KYBRD, TYPAM, and SERCH which do not appear in

Table A-2 either do not detect e r r o r s o r output e r r o r messages directly.

Table A-2 shows, for each e r r o r

169

TABLE A-1. ERROR NUMBERS AND MESSAGES

Number

1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Message

INCOMPLETE SUBSTATEMENT
ILLEGAL FORMAT FOR I F STATEMENT
ILLEGAL USE OF L I S T OR EXPLAIN
ILLEGAL USE OF GO OR TO
LEFT AND RIGHT PARENTHESES UNBALANCED

ILLEGAL USE OF INTERVALS
SYSTEM ERROR - ILLEGAL CHARACTER I N POLISH STACK

SYSTEM ERROR - UNBALANCED POLISH STACK
SYSTEM ERROR - ADDRESS I N DELIMITER L I S T
PROGRAM EXCEEDS AVAILABLE CONSTRUCTION SPACE
UNDEFINED STATEMENT NUMBER I N GO TO STATEMENT

EXCEEDING CONSOLE PROGRAM STORAGE AREA
EXCEEDING MAXIMUM NUMBER OF CONSOLE PROGRAMS
T H I S NAME HAS BEEN PREVIOUSLY DEFINED
CONSOLE PROGRAM NAME MUST EXCEED ONE CHARACTER
MULTIPLE DECIMAL POINT I N CONSTANT
UNUSED
ILLEGAL USE OF E D I T

ILLEGAL PARAMETER STRING
UNDEFINED VARIABLE
ILLEGAL SUBSCRIPT
ILLEGAL ARRAY PARAMETERS
APPLYING RELATIONAL OPERATION TO NONSCALAR OPERANDS

DIMENSION INCOMPATABILITY
ATTEMPTING TO STORE I N CONSTANT LOCATION

SYSTEM ERROR - EXTRANEOUS VARIABLE WITHOUT OPERATION

SYSTEM ERROR - ILLEGAL OPERATION CODE

SYSTEM ERROR - NEGATIVE ARRAY LENGTH

EXCEEDING DATA AREA - x1 WORDS AVAILABLE
SYSTEM ERROR - NEGATIVE OR ZERO TABLE REFERENCE
EXCEEDING CAPACITY OF DATA TABLE
SYSTEM ERROR - SORTING ERROR I N DELETE
EXCEEDING 54 CONSTANTS I N A CONSOLE PROGRAM
UNUSED
SYSTEM ERROR - NEGATIVE L I N K I N DATA STORAGE
SYSTEM ERROR - ERROR I N STORAGE ALLOCATION
ILLEGAL USE OF SAVE OR DELETE
ILLEGAL OPERAND FOR PARTICULAR OPERATION

EXCEEDING 29 VARIABLES I N A CONSOLE PROGRAM
ATTEMPTING TO E X I T AT KEYBOARD LEVEL
EXCESSIVE NUMBER OF PARAMETERS
INSUFFIC IENT NUMBER OF PARAMETERS
EXCEEDING TEN CONSOLE PROGRAMS CALLED I N A PROGRAM
OPERATION CAN NOT HAVE SCALAR OPERAND

SYSTEM ERROR - NEGATIVE PROGRAM INDEX

1-70

TABLE A-1 - C o n c l u d e d

Number

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

Message

STATEMENT TOO LONG

ATTEMPTING RECURSIVE CALL TO A CONSOLE PROGRAM

UNDEFINED CONSOLE PROGRAM
CONSOLE PROGRAMS EMBEDDED MORE THAN TEN LEVELS
CONSOLE PROGRAM EXECUTION AREA I S FULL
ILLEGAL CHARACTER
EXCEEDING 45 STATEMENTS I N A CONSOLE PROGRAM

UNUSED
STATEMENT INCOMPLETE
STATEMENT NUMBERS NOT I N SEQUENCE
DUPLICATE STATEMENT NUMBER
UNNUMBERED STATEMENT
ILLEGAL STATEMENT NUMBER
ILLEGAL STATEMENT
ILLEGAL USE OF NAME
ILLEGAL USE OF I N T R I N S I C
ILLEGAL SHIFT PARAMETERS
ILLEGAL USE OF TYPEOUT
UNUSED
UNUSED
LABEL TOO LONG

SYSTEM ERROR - NEGATIVE NUMBER OF PARAMETERS

SYSTEM ERROR - ERROR I N CORE ALLOCATION

SYSTEM ERROR - ERROR I N EXECUTING TYPEOUT

l T h e n u m b e r of w o r d s ava i l ab le , x, i s provided when t h e message i s output.

17 1

172

f

1 7 3

W
a,
0
3

0

tJ
I

N
I
4
w
A

Ip.

5

m
;z

174

Listings for the programs in the system appear in this appendix

in the order in which the programs a r e described in Section 4. An

alphabetized index is provided on following page.

operates only under Version I1 of the 1130 Disk Monitor System,

because of core limitations the FORTRAN programs must be compiled

under Version I.
GETOP must be assembled using Version 11; however, the remaining

Assembler language programs can be assembled using either version.

Although the system

The two Assembler language programs CTL and

17 5

Index to Program Listings

Program

A JS
ALT5
ALT5A
AMTRN
CDR
CTL
D LT
EBCTB
EDT
FRE
GARB
GET
GETOP
HOLTB
INTL3
ITZ
JMP
KYBRD
LSG
LST
MOV
NAM
RDLL
RST
RTN
SCA
SC B
SERCH
SHF
STK
STV
TAB
T RG
TY PAM
WRT

Pag e

258
264
266
177
214
178
193
26 8
191
262
260
259
220
267
263
18 1
224
25 1
234
2 48
263
187
196
183
222
200
204
25 7
263
2 10
227
244
23 9
252
23 1

1-76

177

PROGRAM CTL
ENT CTL

KODE EQU / 7 f FF
KOP EQU / t b F f
KOA EQU
KP EQtl
I EQU
d EQU
L EQU
I EQU
I € EQ / 7 5 f 0
LP EQ i 7 5 E C
IE EQU /75E9
I G T EQU /35E8
CfL DC 0

CALL I f t

L

LO99 CALL SCA
DC bR
LOX I2 LR

L I Z 0
LS?
LO11

L100 CALL SCB
DC LR
LD LR
S TWO

S t 0 L I G V
E3 L402

C l L O O O l O
CtL00020
CTL09040
CTb80050
C?L00060
CTL00090
CTL00080
CTLQ0090
C l L . O Q l , O O
CTL00110
c TLOO $20

TLOOl3O
TL.00148

CTb001150

6TL00240
CTL09250
CTL00260
CfL00270
CTL00280
CfL.0029
COL.0030
CfL003X
6fL00320
C f t Q 0 3 3 5
CTb00350
CfL00370
CfL00380
CfLO0390
C ?LO0400
CfL00410
C f L OQ42 0
C f t 8 0 4 3 0
CTL00440
CTL.00450
CT'L00460
CTL.00470
CTL.00488
CfL00490
C T L O O 5 O O
CTL00510

?LO0520
fL80530

CfL00540
e f L O O S 5 O

178

ONE DC 1
LR DC 0
ZRO DC 0
TWO DC 2
c3 DC 3
L320 C A L L WRT
L400 LD L !E

BN L9 19
BP L404

L321 LD Z R O
STO L I G T

L401 MOM L l e 1
LD L ID
s O h €
BN L919
BP L3Ol

L402 LD L L
s L I t
BN LO11

LD L I€
B N t L404
LDX I2 J
BSC 1 2 SW2-1

SW2 DC L40 5
DC L307
DC L309
DC L320
DC L317
DC L318
06 L3061
DC T A B l

T A B l CALL ?AB
B b400

L3061 W A I T
8 132 1

L307 CALL JMP
B b400

L309 CALL S T V
8 b40

L318 CALL TRG
B L40

L317 CALL LSG
BC bR
L O X I2 LR
B S

sw DC
BC L40 1

LO12
L404

KP
LD IIB

L301 CALL CEfOP

L4 TWO

C'fL00670
CfL00680
CTL00690
CTLOOfOO
CTLOOflO
C.1100720
CTL00730
CfL00740
CTL00750
CTL00760
CTL00770
CTL00780
CTL00790
CTLQO8OO
CTL00810
CfL00820
CfL00830
CTL00840
CTLOOBSO
CTL00860
CTL.00870
CTL00880
CTL00890
CTL00900
CTL00910
CTL00920
CTL00930
CTL00940
CTb00950
CTb00960
CTL00970
CTL00972
CTL00974
CfL00976
CTL.00980
CTL00990
C f L O l O O O
CTLOlOlO
CTL01020
CTL01030
CTL01040
CTL01050
CTL01060
CTL01070
CTL01080
CTL.01890
CTLOllOO
CTL01110
CTL 0 11 20
CYL01130
CTL0114Q
CTLOl l50
CTLOl160
CTLOlL170
CTLBll8O

CTL01200
CTL011210
C P L 0 % 2 % 0

179

sw4 DC
DC LO11
DC LO12
E N D

180

PROGRAM IT2
*LIST ALL
*ONE WORD INTEGERS

SUBROUTINE IT2
DIMENSION ~ C ~ A ~ 1 ~ e K C L B ~ l ~
DIMENSION ICD(1)
DIMENSION IB/2)eIW(2),ICPT(95,6)
DIMENSION DATA(1)
COMMON K O D E (2 3 8 0) e I D A t (9 0 ~ 2 ~ ~ 1 ? (1 0) ~

EQUIVALENCE 1ICD(1)*KODE(841))
EQUIVALENCE 1 I W (l l t K O D E ~ 7 0 4)) r ~ I O ~ l ~ ~ K O D E ~ l)) , (r S F ~ K O D E ~ l ~ ~ ~

EQUIVALENCE ~ D A T A (l) ~ K O O E (l 1 4 2 ~ ~
EQUIVALENCE ~ K C L A (1 ~ ~ K O D E (9 7 2) ~ ~ ~ K C L B ~ l , ~ ~ K O O E ~ l O 2 2 ~ ~
11-1
READ (3'II)ISFrIFR,NCP
CALL DATSW(2,ISSI
GO T O (4 0 ~ 4 2) eISS

~ ~ ~ J ~ L ~ I I ~ I D ~ I E ~ I F T ~ K O N I L N T , L P V ~ N C P ~ N V ~ I E X ~ ~ G T ~ N M B B N A P

1 ~ I F R t K O D E I 2 ~ ~ ~ ~ N P ~ K O D E ~ 3 ~ ~ r ~ I C P T ~ l e 1 ~ ~ K O D E ~ 4 ~ ~

40 WRITE (~ ~ ~ ~) I S F ~ I F R I N C P
41 FORMAT(1516)
42 IF(ISF)lelS,l
1 IF(NCP)l00rlle2
2 1114

REAO(3'11)((ICPTlJrK),K+l~6)rJ~l~NCP)
GO tO(43~44)eISS

43 W R I T E (3 n 4 1) ((I C P l (J t K) ~ K ~ l e 6 ~ ~ ~ = l ~ N C P I
44 NN=O

3 J=O
IFR1574

DO 7 KslrNCP
1F(1CPT(Ke4)=1FR)7~10#4

4 IF(316e695
5 IF(ICPT(J,4)-1CPT(Kt4))7e6,6
6 J=K
7 CONTINUE

IP- ICPT (J r4 1
NM=ICPT/JB~)=IP
NRI=NM+ICPT(Jt6)
ICPf(Jr4)rlFR

SF(NR=1600172#72,71
70 NR=NRI

71 NR-1600
72 II=IP

R E A 0 ~ 3 ~ I X ~ ~ I W ~ N ~ e N ~ 1 , N R)
IP=II
I I*IFR
W R I T € (~ * ~ X) (~ W (N I B N ~ ~ , N R I
IFR=IfR+NR
NRIrNRI-NR
IF(NRI)73ei'3970
I C P T (J ~ S) P I C P T (~ O ~) + N M
GO f O 75

10 ~ F R s I ~ R ~ ~ ~ ~ K 6 ~ ~ m I C ~ T ~ K e 4 ~ ~ I
45 ~ N ~ N ~ ~ ~

P O 0 NCP=O
11 %FR
12 IFI) 1

1 2 1 MEN
DO 14 K ~ ~ ~ 9 ~

181

00 13 N-196
13 ICPTlK@N)rO
16, CONTINUE

XI=l
W R I T E ~ ~ ~ I f f ~ l S f ~ I F R ~ N C P l (l t C P f o r M l l r 6 ~ ~ J = l + 9 5 ~
GO TO (45919)+1SS

W R I t E ~ 3 ~ 4 1 9 ~ l I C P l (3 * K ~ * K = l ~ 6 ~ ~ J ~ l ~ N C P)

15 ISf+O

45 WRXTE (3e4l)ISFeIFRtiNCP

19 OATA1607)=000
DATA/608)=ZeO
DATAt609)~2eO
DATA t 610 -3 e 0
DATA1611)=400
DATA16121m500
DATA(613)~600
DAfA1614)=7e0
OATA(615)~800
DATAI6tb)m9eO
DATA(617)~1000
DAfA(618~~301415927
DAlA(619)=5702958
DATA(620)=000174533
KCLA (1) e9
KCLA 2 1 =lo
KCLA(3 1-49
KCLA(4)-50
KCLA(Slo51
KCLA(6)=208
KCLA(7)=209
KCLA(8)=212
KCLA (9) -218
KCLAI10)=430
KCLA(ll)=713
KCLB (1) = l
KCtB(2) = 2
KCLB 3) r 3
KCLB (4 1 e4
KCLO(5) =2
KCLB (6) -6
KCLB 4 7) =5
KCLE (8 1 e6
KCLB 4 9 1 =7
KCLB(lOIm6
KCLB111)=8
11+5Q1
R E A D ~ 5 ~ 1 I ~ ~ I C D I M) ~ ~ ~ l ~ 5 0)
KODE (71 =I
1106282
W R T T E (~ ~ ~ I ~) ~ I C D (M I I M ~ ~ ~ ~ O ~
lTt89rl

NV=O
I T (41~1
KODE(6 1 =0

)(KOBE(M)9M=79001140)

182

PROGRAM RST
* L I S T ALL
*ONE WORD INTEGERS

SUBROUTINE RST
DIMENSION I C P T (9 6 , 6) @ L O O K (6)
DIMENSION ICA(2)9IC8(2),~CC(2),NVA(2),NVBoeNVC(2),I~A(~~,IOB(~)
DIMENSION I S P (l) , N V A R (S 0 , 5)
COMMON KODE(2380)tIDAT(90r2)eIT(lO)~

EQUIVALENCE I N V A R (~ ~ ~) B K O D E (~ ~ ~))
EQUIVALENCE (NP ,KODE (4)
EQUIVALENCE (N P P e K O D E (5))
EQU I VALENCE (NPV 9KODE 6 1 I
EQUIVALENCE (ICARD,KODE(7) 1
EQUIVALENCE (1 S P (l) ~ K 0 D E (1 1 4 1))
EQUIVALENCE ~ L O O K ~ 1 ~ ~ K O O E ~ 5 1 3 ~ ~ r ~ I T l , r t o)
EQUIVALENCE (I T 4 ~ I T (4)) ~ (I T 8 r I T (8)) ~ ~ I T O)
EQUIVALENCE ~ I C A ~ 1 ~ ~ I C P T ~ 1 ~ 4 ~ ~ ~ ~ I C 6 ~ l ~ ~ I C P T ~ l ~ 5 ~ ~ ~ ~ I C C ~ l ~ ~ I ~ P T ~ l ~ 6

~ ~ ~ ~ ~ N V A ~ ~ ~ ~ N V A R ~ ~ ~ ~ ~ ~ ~ ~ N V B ~ ~ ~ ~ N V A R ~ ~ ~ ~ ~ ~ ~ ~ N V C ~ ~ ~ ~ N V A R ~ ~ ~ ~ ~ ~ B ~ I D A ~ ~
2 ~ s I D A f ~ l ~ l ~ ~ ~ ~ I D B ~ 1 ~ c r D A f ~ l t 2))

EQUIVALENCE ~ 1 S P l ~ I S P ~ 1 ~ ~ ~ ~ I S P 2 ~ I S P ~ 2 ~ ~ ~ ~ I S P 5 ~ I S P ~ 5 ~ ~ ~ ~ I ~ P 6 ~ I S P ~ 6 ~
1 ~ ~ ~ K ? 5 0 ~ K O D E l 7 5 0 ~ l ~ (K T , K O D E ~ l ~ ~ ~ ~ K 2 , K O D E ~ 2 ~ ~ ~ ~ K 3 ~ K O D E ~ 3 ~ ~
50 T 0 (2 1 9 1 , 6 0 0 , 5 0 0 , 1) ~ 1 f 4

1 I ~ J ~ L ~ I I ~ I D ~ I E ~ I F T t K O N , L N T , L P V , N C P , N V ~ I E X ~ I G T ~ ~ ~ M B ~ N A P

6 C O N R I = N C P * l
ICRD- ICARD
I I = l
R E A D (3 t I f) I S F # I F R t N C P
I F (N C P) 3 3 , 3 3 t 3 4

DO 3 6 K m 2 r N R I
DO 3 5 M = l t 3
I F (L O O K (M) - I C P T (K r M 9) 3 7 , 3 5 , 3 6

35 CONTINUE
I P =K
GO T O 107

3 6 CONTINUE
3 3 K = N R I + l
37 I P =K-1

34 R E A D ~ 3 ~ I I) ((I C P T I J , K) , K t l t 6) ~ ~ ~ 2 ~ N R f)

107 NMsNRI
NN= I P
NR= I P
GO TO (3 8 e 3 8 9 3 1) v 1 E X

3 1 I S F = l
I F (I P - 1 - I T l 3 3 2 9 2 0 3 , 2 0 6

32 N M = I T l
GO TO 26

2 0 6 I P p I P + l
N N = I T I 4 2

203 N M a I P
N R S I T 1
GO T O 2 6

3 8 NCPnNCP4l
2 6 DO 2 9 K = l t 6
29 I C P T (% P 9 K)

NMf 1

183

GO TO(22e5069512) eIEX
500 I T 4 m 1

NMab
511 GO TO (506~501~509s501),NM
501 GO ?O (5029504~506)eIEX
502 11x3421

503 IEX=2
504 ICARDSNM-1
505 NPVnO

506 fI=IEX+1170+1081

W R I T E ~ 1 ~ ~ ~ ~ ~ K O D E ~ K ~ r K ~ l ~ l 1 4 O ~ ~ ~ I l ~ N ~ ~ N ~ l e 2 O ~ ~ ~ I T ~ M ~ ~ ~ = 2 2 ~ 2 6 ~

GO TO 21

READ(l@III (KODE(K)tK~l*ll40)e(Il(N)~N~lr2O)+tIT(Ml eMt22926)
GO f0~5080~507r508~501),NM

507 GO TO (502,508)rIEX
5080 GO T0(50895081),ICRD
508 WRITE(Ie901)
901 FORMAT(1H 1

5081 1 1 8 ~ 1
IE=l
NAP=O
GO TO(SlOe18r18)rNM

509 GO TO15089506,512l eIEX
512 WRIfE(1~902)
902 FORMA?~lOXe8HCONtINUE)

GO TO 506
510 GO TO (18~39),NN
39 IT413
1 1 1 8 1

1003 IP*1

1001 IF(NCP)120e120*2

REAO(3tII)ISF+IFR,NCP

I F ~ ~ S F) 1 0 0 1 ~ 1 7 ~ 1 0 0 1

2 6F(IFR~29000517r17~204
204 IIa4

R E A D (3 e 1 1 ~ ~ (I C P T ~ J t K) , K m l , 6) , J I L t N C P)
NN= 0
IFR-574

DO ? KSltNCP
IF (ICA(K)-IFR)?,~OI~

3 J = O

4 IF(J169605
5 IF(fCAtJ)=fCA(K))7,6t6
6 J-K
7 CONTINUE

60 TO(8~9)rfP
8 IIm4591

W R I T E (l @ X I) (KODE1M)+Mm1,1600)
IPS2

9 IP=ICA(J)
NMnlCB(d)-IP
N R ~ N M + I ~ C (~)
ICAIJISIFR

~ ~ ~ ~ R % ~ ~ 6 0 ~ ~ 4 $ ~ 4 8 , 4 ?
46 N R I = N R

47 NRI=1600

184

IP=II
IImIFR
W R I T E 1 3 " I ~ (K O D E 1 M ~ , M ~ l , ~ ~ I ~
IFRaIfR+NRI
NRaNR-NRI
IF1NR)50t50,46

58 ICB(JI=ICA(J)+NM
GO TO 11

10 IFR+IFR+fCB(K)-ICA(K)+ICC~K)
11 NN=NN+1

120 IFRr574
121 ISF*O

Ita1
GO TO 413r14)rIP

GO TO 17

1114591
R E A D ~ l t l I) ~ K O D E ~ M) r M P 1 , 1 6 0 0)

17 GO t0~201r170tl8r18e201)(rr4

18 I F (N M B ~ 1 1 1 9 0 ~ 2 0 1 ~ 1 9 0

IF(NN=NCP)3,121~121

13 WRITE(~@II)ISFBIFR~NCP

14 W R I T E (3 t S I) I S F i I F R ~ N C P , (t f C P T ~ J r ~ ~ ~ ~ ~ ~ l ~ 4 ~ ~ ~ ~ l ~ N C P)

170 IE=f

190 IT4tl

22 NPV*O

201 IT4m1
21 NV=NPV

RETURN

1CARD.rl

IF (N V) 2000~2000t2005
2000 GO TO (2001e205t205)~fEX
2001 IFT=O

I SP 111 145
I S P 2 ~ 6 0 4
ISP5=0
ISPbtO
LNTa604

200 11=6191

205 ID=1

2005 GO TO4 205 9200) o I T 8

R E A D (1 ~ 1 I ~ (K O D E ~ M) r M ~ 7 5 0 ~ 1 1 4 0)
IT6-1

NAPSO
NPPsO
NP.0
GO T O (P009118r12) 9IEX

100 WRITE(lt1002)

eo T O 112
1002 FORMAT(//2X,13HENTER PROGRAM)

110 GO T0~1100912r112)~ICARD
1108 WR%tE(16111)

Af(/lOXs25WENTER P R ~ G ~ A ~ - S ~ P ~ ~ € S § & D -)
13 KaS511t840

113 KODE(K)=O

185

K39410
LPVE7
N=NV+1
DO 19 I - N v 3 0
K O D E (I + 2 5 2) P O
NVA(I l=O
NVB(1) = 0

19 N V C (1) - 0
GO TO L 1 9 0 0 r 1 9 0 1 ~ 1 9 0 1) r I E X

1900 DO 191 f 0 N # 9 0
IDA(11-0

191 IDB(I)-O
1901 DO 20 1 - 3 1 9 5 0

NVC(Il=O
K O D E (I + 2 5 2) a 0

28 N V B (1) - 1
t.7
NMBrO
1 7 6 9 1
I E a O
RETURN
END

186

PROGRAM NAM
r L I S T ALL
,ONE WORD INYEGERS

SUBROUTINE NAM
DIMENSION NVAR(50 ,5) ,NVA(2) ,NV8(2)

DIMENSION K 6 H (2) , I C D (S O ~ ~ K T P ~ 8 0)
DIMENSION L G O l 2 9
DIMENSION LQOK(1)
COMMON K O D E ~ 2 3 8 0 ~ ~ I D A f ~ 9 0 ~ 2) , r t ~ l O ~ ~

EQUIVALENCE (N V A R (l , l) , K O D E (8 9 1))
EQUIVALENCE (N V A (l) , N V A R (1 , 4)) , (N V e (l) , N V A R (l , ~))
EQUIVALENCE (N t B (l) t K O D E (f S l))
EQUIVALENCE (L G O (l) , K O D E (7 9 6))
EQUIVALENCE (lTlrIT(l)),(NPV,KOOE(6)~
EQUIVALENCE (LC,KODE(750))
EQUIVALENCE ~ L Q O K ~ ~ ~ ~ K O O E ~ 5 1 3 ~ ~ ~ O , K O D E ~ 5 1 1 ~ ~ ~ 4 1 F 2 ~ K O D E ~ 5 1 ~

X e ~ L 4 ~ K E E P ~ 4 ~ ~ ~ ~ L S t K E E P ~ 5 ~ ~ ~ ~ L 6 ~ K E E P ~ 6 ~ ~ ~ ~ ~ 4 ~ K O D E ~ 4 ~ ~ ~ ~ I l 6 ~ I T ~ 6 ~ ~
X ~ K l ~ K O ~ E ~ l ~ ~ ~ ~ K ~ ~ K O D E ~ 2 ~ ~ ~ ~ K 3 , K O D E ~ 3 ~ ~ ~ ~ ~ T ~ ~ l T ~ 4 ~ ~ ~ ~ I T 8 ~ I T ~ ~ ~ ~ ~
X (I C D (l) , K O D E (B 4 1))

ION N T B ~ ~ ~ , K ~ & ~ ~ 6 ~

l I ~ J ~ L ~ I l ~ I D ~ I E ~ I F f ~ K O N I L N f , L P V @ N C P , N V 1 1 E X ~ I G T ~ N M B ~ N A P

EQUIVALENCE (I C A R D t K O D E (7))
EQUIVALENCE (K Y P (l) , K E E P (l))
ICRDwlCARD
NPsK4
K 4 m O
M=LPV+1
I f (M - 1 2 8) 3 1 , 3 0 9 3 0

30 I f (L C I N M B 1 3 3 r 3 3 ~ 3 2
32 LC=NMB
3 3 M=M-127
3 1 LGO(NMB)=128*LGO(NMB)+M

GO T 0 (1 0 0 1 ~ 1 0 0 1 ~ 1) P I E X
1001 I F (N C P = 9 5) 1 * 9 1 4 r 9 1 4

1 L = L P V + l
I F l = l
IF(K~H(3)-28161963,7050~70SO

7050 I F (f F 2) 7 0 5 , 7 0 5 , 7 0 0
700 IF(IF2/100-4)963r701,963
701 K O O E (L) = 2 8 1 6 0 + I F 2

I F 2 = 1 F Z m 4 0 0
L4.41
IF1=2
I F (N V A (% f 2)) 9 0 5 r 7 0 3 ~ 7 0 ~

304 WRITE 41,7041
704 FORMAT^^^^ THE VARIABLE CHOSEN FOR FUNCfIONAb RETURN APPEARS YO

70 OO~$OOOv910
100

NSFs f 76-1
800 IF(NPVsNV)9709706,970

187

821 IF1KV-43)823#86r824
823 IF(KV=10)96899lt968
824 IF(KV=45)87e91@87
86 IFLMM-l)968~89e968
87 XF((KVm41)/3m11968r88e968
8 8 IFtMM-419
89 MM=KV-41

GO TO 91
8 3 GO t0(92,968992,968~968}tMM
890 GO TO(9689891r9689968r89l)t~
891 MM=4

KaKV-400
IFINVBIK))968990r968

98 NVB(KI=N
N=N*1

91 CONTINUE
GO TO 968

92 K4=N=l
MN.1
NN=l
DO 109 M m l t N V
IF~NVA(M))lO6r93t100

93 IF(NVB(M))94t94tl09
94 GO t0(491t490),1Fl
490 fF~M-IF2~491t108r491
491 GO TO(95t97)tNN
95 WRITE(lr96)
96 FORMAT(38H *+ THE FOLLOWING APPEAR UNDEFINED **)

97 IF(MN-11972t972t971
NN.2

971 K?P(MNl+ICO(47~
MN=MN+l

972 00 98 M M ~ 1 5 3
JK=NVARIMtMM)/256
KJ=NVAR{MtMM)-256*JK
IF(JK-101973t981t973

973 KTP(MNl=ICD(JK+l)

944 K?PIMN)=fCO(KJ+l)

981. lF(MN-741108~982r982
982 W R l T E (l o 9 9) (K T P (M ~) t M M m t r M N)

MN=MN+l

98 MNnMN+l

SF(KJ-l0)974t9819974

99 FORMAT f 8X r80A11
MN= 1
GO TO 108

100 IF(NVB(M))1089108tf09
108 NVB(MI=N

N=N+1
189 CONTINUE

t f F2 1 1659 9968 t968
1 1664 9 664 $661

188

If(NVA(M)9671r671,665
665 NVB(M)=N
670 N=N+l
671 NV=N=l

Ne 8

IBzKOOE(N)-512*IA
IF(IA-9)6712,6711+6712

GO T O 681

6710 IA=KODE(N)/512

6711 N=N+lB+l

6712 IF(IA~l)6714t6713~6714
6713 GO TO(68096715) ,IF1
6715 IF(NaL)6716,680e680
6716 KaL-1

GO TO 675
6714 JlIB-400

IF (J1 680r680~672
672 KmJ-49

IF (K) 673,6739674
673 KOD€(N~=KOOEIN)+NVB(J)-J

IF(IA=4)6809679e680
679 N=N+3

GO TO 680
674 MMmO

IF(K-LG)6741,6740~6740
6740 MMt127
6741 K+LGO(K)=128*~LCO(K)/l28)+MM

IF (K) 911,911,675
675 KODE(Nl=6388+K-N
680 N=N+1
681 IF(N-L16710a6710~682
682 Kl-L

LL*(L+NV+1)/2+1
M=2+Ll.-2
K2+M
N-L+l
DO 10 K=N,M

10 K O D E (K) - 0
N*O*KON*M
K3-N
IF(KON)13,13tll

11 CALL MOV (LC*152rKON)
13 M=N+4+NP

14 CALL MOV I(N+2)/2r206@2*NP)
16 00 17 K~597
17 KODEIK)=O

1112
READ(3@II)IFR
L4= I F R
IItIFR
I F (I F ~ + M + 2 * N M B + N S F = 3 0 7 2 1 ~ 1 ~ 0 ~ 1 ~ ~ ~ ~ 1 ~

I F R = I FR+M
DO 4 K ~ l e 3

KlsNMB
N=NM841

IF(NP)16~16r14

178 WRITE(3"I)(KODE(K),K~l,M)

4 K E € P (K) + b O O K (K 1

189

18

102
103

104

5

970
96 3
968
914
913
91 1
910

DO 18 KslrNMB
KOQE(K+l)=NTB(K)
N*N+1
K O D E (N) r L G Q (K) / 1 2 8
IFN=(IEX-lt+l140
II=l+IFN
M=2+NM8+2
N=NSF+M- 1
I F (N ~ 1 1 4 0 ~ 1 0 3 ~ 1 0 3 ~ 9 1 0
R E A D (l ~ I I) (K O D E (K) t K r M , N)
Lb=N
L5*1FR
It=IFR
IFR=IFR+M
IF(IFR~30'?20)104~104,913
W R I t E (3 ' I I) (K O D E (K I , K I 1 , N 1
1t4-3
00 5 K s l r 6
LOOK(K)PKEEP(K)
1112
WRITE(3' I 1 1 IFR
ICARD= ICRD
RETURN
1€=7
I€= I E+42
IE=IE+7
f E - I E + l
fE=SE+2
IE*IE+1
IE=IE+10
RETURN
END

190

191

2 2 NTB(Ml=NTB(M+1)
GO TO 27
LGO(KI--LGOIK)
GO YO 27

24 IF(NTm45)2S0954~954
2 5 M*NT+1

DO 26 N ~ K P N T
LCO(M)=LCO(M-l)
NTB(M)=NTB(M=~)

NTB K 1 =NS
LGO (K 9 =O
NT=NY+l

2 9 tM92
GO T0(1~31,281$NN

28 3=J+1
1F(KCH(J)-10)919~28,29

29 fF(KCH(J)-46)919,1,30
30 IF(KCH(J1-50)919~31,28
31 GO T0(919@32)9LM
32 IP+If

GO TO(200o200~201) ,IEX
200 1114591

W R I T E ~ ~ ' ~ I ~ I K O O E ~ K ~ ~ K ~ ~ , ~ ~ ~ O ~ ~ ~ I T ~ ~ ~ P ~ ~ ~ ~ ~ O ~ ~ ~ I T ~ M ~ ~ M = ~ ~ B Z ~ ~
201 DO 202 KP1,NT

NTA(K)=NTB(KI
202 LCA(K)=LGO(K9

IT(2)tIP
KODE (6) PO
IT(6)-1
1ex=3
IT(3)=0
NMBtO
WRITE(le901)

GO TO (3 3 t 3 4 1 , I S W

26 M=M=1

9811 FORMAT(/lOX,4HEDIT)

33 W R I T E ~ 3 r 1 0 0 ~ ~ N T ~ ~ K 1 o L G O o , K P 1 , N t)
34 RETURN
961 IE=7
954 IE=IE+35
919 X E m 1 9

RETURN
E N D

192

PROGRAM DLT
*LIST ALL
*ONE WORD INTEGERS

SUBROUTINE DLT
DIMENSION I O P ~ 5 0 ~ 5 ~ ~ 1 0 T ~ 9 0 1 ~ f D S ~ 2 ~ ~ I Q ~ ~ 2)
DIMENSION IDD(50)~1CPT195,6)
COMMON K O O E ~ 2 3 8 O) 9 I D A T (9 0 r 2) , I f o ,

EQUIVALENCE (fOP(l@l)*KODE1891)),(IDD(I),KODE(461) 1
EQUIVALENCE (J S , I T (9)) ~ (J N , I T (l O))
EQUIVALENCE (L A C , I D A T (9 0 t l) l , (L T , I D A T (9 O ~ 2) ~
EQUIVALENCE 1IDS(1)~IDAT(l,l)),(IDL(l)tIDAT(l~2~)
EQUIVALENCE (NPV,KODE(6)1
EQUIVALENCE(KPrIT(7))
GO TO (205r206)rKP

263 IM=1
IP=l
N N = 2 7 7 - ~ 0 0 (1)
DO 1 Ks1,NV

1 IOP(K94)=NN-1
DO 4 K-2,290
1 F (I D D ~ K ~ - 2 6 8 ~ 1 0 0 ~ 4 ~ 1 0 1

l I e J ~ L ~ I f r I D ~ I E ~ I F T t K O N , L N f r L P V 1 N C P e N V ~ I E X ~ I G T ~ N M B ~ ~ ~ ~

100 IF(IDD(K)-99)93?~5+101
101 M=IDD1K)/100

102 GO T 0 (1 0 3 r 9 3 f r 9 3 7 ~ 1 1 5 ~ 9 3 7 ~ ~ M
103 GO TO(937r104) ,NN
104 GO T0(105,1061rIP

IF(M)937+937r102

105 IPa2
I I = l
I C = K O O E (ID+ZI+ID-1
R E A D ~ 3 ' f f ~ I S F ~ I F R ~ N C P l ((f C P T ~ ~ ~ M ~ ~ M ~ l ~ 6 ~ ~ ~ ~ l ~ ~ C P ~

00 110 J=l*NCP
DO 109 M=1t3
No1 f + M
I F ~ K O D E ~ N ~ ~ I C P T ~ J ~ ~ ~ ~ l l O ~ l O 9 r l l O

109 CONTINUE
GO TO 112

116 CONTINUE
GO TO 4

112 00 113 M = 1 * 6
113 ICPT(J9M)tO

GO T O 4
9 1 5 MsIDD(K1-400

IFtM)937,937r2

I M m 2

106 II~IC+4*~IDD(K)-101)

2 I O P (M , ~) Z ~ ~ N N

4 CONTINUE
5 GO YO (7396)eIP
6 331

DO 66 KrleNCP
fF(ICPT(K~1))930t66068

68 I ~ ~ J ~ ~) 6 1 , 6 ~ , 9 3 2
1 BO 64 Me196

64 ICPT(K,M)PO
I C P ~ ~ J , M ~ ~ ~ ~ P ~ ~ K , ~)

K=NCP
NCPsJ-

193

194

26 IDL(KIm0
2 8 RETURN

931 I E = 5
932 IE=IE+2
9 3 0 IE=tE+30
900 RETURN

END

195

PROGRAM RDLL
*LIST ALL
*ONE WORD INTEGERS

SUBROUTfNE ROLL
DIMENSSON LGO(11sNMfS)
DIMENSION K T M (% ~ ~) , K C H (~ I , K W ~ (~ ~ ~) , N T B (~ ~ , N V A ~ ~ N V ~ ~ ~ ~ S ~ V ~ ~ ~ ~
DIMENSION ICD(50)
DIMENSION N V A R (5 0 v 5)
COMMON K O D E ~ 2 3 8 0) ~ I D A T (9 0 , 2) ~ I T ~ l O) ~

EQUIVALENCE (K W T (l) ,K03€(4Sl))rlK~H{l~~KO~E(457~~
EQUIVALENCE(tGO(l)~KODE(796))
EQUIVALENCE (IBeICD(11))
EQUIVALENCE (IT3rIT(3))
EQUIVALENCE (NPtKODE(4))
EQUIVALENCE (NPP,KODE(S))
EQUIVALENCE (NPVtUODE(6) I
EQUIVALENCE (ICARD,KODE(7))
EQUIVALENCE (NTB(l)tKODE(751)1
EQUIVALENCE (ICD(1)@KODE(84111
EQUIVALENCE (NVAR(ltl)~KOOE~891)t
EQUIVALENCE ~ J T 1 ~ I T ~ 1) ~ ~ ~ I T 2 ~ I T ~ Z ~ ~ ~ ~ I T 6 ~ I T ~ 6 ~) , ~ I T C ~ I l ~ 8 ~ ~ ~

~ I ~ J I L ~ I ~ ~ I D ~ I E I I F T ~ K O N , L N T ~ ~ ~ V ~ ~ C P , N V , I E X ~ I ~ T ~ N M ~ ~ N A P

X (K W T ~ + K W T (~)) , (K W T ~ ~ K W T ~ ~) ~ B ~ K ~ T ~ V K W T ~ ~ ~ ~ ~ (K ~ T ~ ~ U W T ~ ~ ~ ~ ~ ~ K W ~ ~ ~ K W ~
X(5))

1))
EQUIVALENCE (N V A (l) r N V A R (1 , 1)) , 1 ~ V B ~ ~) * N V A R (l ~ 4)) , (N V C (l) , ~ V A R (l , 5

N X = l
NCXrl
KF*(IEX-1)+1140
GO TO (3*2)#1TC

2 IF (NAP) 1900r2000~1900
1900 11*6591

2000 Ifr6191
W R I T E (1 ~ 1 1 ~ 1 K O D E (M I ~ M ~ 4 5 ~ + 1 1 4 0 1

READ(l'I1)(KODE{M) rM=750,1140)
ITC=l

3 GO T0140r40t8501,ICARD
40 fF(IE)203t202r203
203 M = l

2030 M-128
2031 1?6=IT6=bCO(NMB)/M

f F (L G O (N M B) - 2 1 0) 2 0 3 1 r 2 0 3 1 t 2 8 3 0

IEaO
GO TO 210

81 K=Q
82 K = K + 1

fF(KCH(K)-L0)85,82$83
83 DO 84 N9195

IF(KCW(K)-NM(N))85,84,85
84 K=K+1

fT6rl
NMBsO
ICARDs

202 LPVSL
NPV-NV
NPPsNP
N ~ B ~ ~ M B ~ ~
IF(NMBe451210,2098954
GO T 0 ~ 2 0 9 ~ 2 ~ ~ 9 2 ~ 0 ~ ~ ~ € X
~ O ~ M ~ ~ ~ 5 5 ~ ONLY ONE MORE STATEMENT CAN BE ENTERED IN THIS PROGRAM)

2 0 8 68 T O (209 9210) B IICARD

196

2 0 9
2 1 0

2 2 0 0

2 2 0 1
2 2 0 3

2 2 0 5
2 2 0 4

304

30 1
3000

302

303
3 0 0 2
3 0 2 0

850

a 5

136
87

5 1
5 2

53
6 2
5 4
5 5

5 5 0
46

5 6 0

57

5 8 0
5 9

5 a

W R I T F (l o 2 0 6 1
IF(NVmNPV)2203,Z203t2200
MtNPV4-1
DO 2 2 0 1 N=MrN\/
NVA (N 1 SO
NVB(N)'O
NVC (N 1 =O
NVmNPV
NP-NPP
Go T O (2 2 0 5 t 9 1) e I C A H D
DO 2204 M + l , 6
K W T (M I a 1 0
KWT3=45
GO TO (3 0 4 r 3 0 4 r 3 0 1) g I E X
NTH(NMH)=256+NMR
GO T O 3 0 2 0
K ~ (1 T 3 m N M R) 3 0 0 0 , 3 0 2 0 r 9 3 0
I F (L G O (Y M 8)) 3 0 3 ~ 3 0 0 2 t 3 0 2
I K m I T 2
M a L G O (NMR
READ(3'If)(KTM(K),KmlrM)
I T2= I T 2 + M
N X = 2
GO T O 8 9 0
ITZ=ITZ-LGO(NMH)
IT3=NMB
NCDmNTH(NMH)/256
NCF=NTB(NMB)-256+NCD
GO TO 560
NM 1 1 = 2 4
NM4 2)el 1
NM (3 1-23
NM 4 1 4 5
NM (5 1 10
NMBnNMB*l
I F (N M B 0 4 5) 8 6 , 8 6 t 9 5 4
DO 87 M s l r 6
K'dT MI =IO
KWT3m45
K K m 6
R E A D (2 r 5 2) N C D t N C F r (K T M O r M 1 1 , 7 4)
FORMAT (I 2 * I X r I2 r l X d 4 A l)
I F (N C D I Y 3 0 e 5 3 t 5 4
X F (N C F) 9 3 0 r 6 2 , 5 4
IF(NCX-NTB(NMt31 1 9 6 0 , 6 3 ~ 9 6 0
I F (N Y R (N M R) I 9 3 0 r 5 5 c 9 5 ~
NCX=NCD+256+NCF
NTB(NMB1nNCX
I F (N M B - 1) 9 3 0 r 5 6 r 5 5 0
I F (N C X - N T B (N M B 1 1)) 9 5 8 , 9 5 9 r 5 6
1 F (N C D) 9 3 0 9 5 8 0 @ 5 6 0
MaNCD/10

KWTlrM
K W T ~ ~ N C D ~ ~ O ~ M
K F (N C F) 9 3 0 9 6 3 @ 5 9

IF(NI930961960
60 KWTS=N
€31 K(WT4=M.
63 GO T01106Q~930r6301rtCARD

1060 CALL, KYBRD(KWT'(1))
KK=J

6130 J=74

IF(KK~299)~061r1062rlO62
1062 IF(KWT(KKm1)~45)946r1061r946

DO 64 Mnla74
I F (K T M (J)=IB)65~64965

64 dad-1
65 M M M s 3

J= 1
11 DO 22 3=1,50

I F (K T M (J) - I C D (r)) 2 2 , 1 2 0 2 2
22 CONTINUE

GO T O 953
12 KK=KK+1

IF(KK=2971171e171,946

I F (1 ~ 4 6 ~ 1 3 e 1 0 0 ~ 1 0 7
171 KWT(KK1=1=1

100 IF(JmMMM)13r25*25
107 IF(1-49113e953913

If(J-MMM)llrll~30

KWT(KK)=51
IF(KK-290131,31,946

31 00 609 YMtl96
KKPKK+l

609 KWt(KK)=lO
GO TO 5 1

K W T (K K) = = S O

J" f
DO 26 M ~ l e K K a 2
KTM(d)=KWT(M)*256+KWT(M+ll

26 JeJ+1
m5j-1
L C O (N M f 3) r M

890 I I [= I T 6 + K f
116s I T6+M
fe(IY6a1140)891a891a910

GO VO (896e9219NX

13 J=J*1

30 KK=KK+1

2 5 KK=KK+l

1061 KWT(KK+1)=TO

891 WRffEtlgIt)(KTM(K1 B K ' l r M I

896 GO TO (899e899~81)eICARO
91 MotGO(NM8)

II=!T6+KF

) ~ K ~ ~ ~ K) r K ~ l 9 M ~

198

099 J=299
M f K K - 6
DO 96 K m l t M
IF(KWT(KK)-5199~~94#95

94 31h)46
95 KWTfJ)=KWTlKKI

J=J=l
96 KK@KU=1

J=J+ l
IF(J-811946,946~97

00 98 KnJv299
KWT (M f =KWT IK)

KOOFt932)=298*J
I = O
KODE(SlO)=O
J* 1
RETURN

99 M=61

9 8 M=M+1

960 I E = l
959 IE=IE+1
958 IE=lE+l
957 IE=IE+3
954 IE=IE+1
953 IEsIE+7
946 1 E = I E + 1 6
930 IE=IE+ZO
910 IE=fE+10

900 ICAROnZ
901 RETURN

END

GO 10~901r90h900) B I C A R D

199

PROGRAM SCA

+LIS? ALL
*ONE WORD INTEGERS

SUBROUTINE SC
DIMENSION L O O K M g l ~ ~
DIMENSION NVA ~ ~ Q ~ ~ ~ 9 I O P ~ 5 6 t 3) r M F t (9 S t 6) t K P G (4 r 1 0)
DIMENSION It00 (56)eMF4(68)tMFSt6O)tMF6(60)
DIMENSION KCH(1)tLOOKtlO)
DIMENSION KCMtl,I,KCP(l)
COMMON K O O € (2 3 8 0) ~ S O A T (9 0 t 2) , I t (l O) c

EQUIVALENCE (NVAR(l,l)tKODE(891)1
EQUIVALENCE (I O O P (L)~KODE(451))t(MF4~l)#MFL~~t4~~
EQUIVALENCE (M F S ~ ~ ~ ~ M F L (l t S) ~ t I M f b l l) t M F L (l , b))
E B U I V A L E N C E ~ I T l ~ l ~ f ? l ~ ~ ~ I T ~ 2 ~ e I l 2 ~ t ~ N P V t K O ~ E ~ 6 l ~
EQUIVALENCE IKCH(l)tKODE(Sll))
EQUIVALENCE ~ K C P ~ l I ~ K O O E (5 1 2 ~) ~ (K C M ~ l ~ ~ K O D E ~ 5 ~ O ~ ~ t (K C ~ l t K ~ ~ ~ l ~ ~
EQUIVALENCE (LOOK(l)rKODE(737))
EQUIVALENCE (IIZtKOD€~729)~tlIMtKOD€~730))
EQUIVALENCE (LVtKODE(331)lt(KVtKOD€(732~~
EQUIVALENCE (K P V e K O D E (7 3 3)) t (K Z ~ K O D E ~ 7 3 4)) , (K 2 e K O D E (7 3 5 ~ l
EQUIVALENCE IKl*KODE4736) 1
EQUIVALENCE (LOOKM(l)tKOOE(7361)
EQUIVALENCE (XLMStKODE(932)! #(IOFtKOOE(933))

EQUIVALENCE ~ I T 7 t I T ~ t l ~ t ~ f T 4 ~ I T ~ 4 ~ ~
E Q U I V A L E N C E ~ I T 9 ~ I T l 9 ~ ~ t ~ I T l O t I T ~ l 0 ~ ~
EQUIVALENCE (NP,KODE(4))
EQUIVALENCE ~ K P G ~ l e l) t K O O E ~ 4 1 l)) ~ ~ I C A R O ~ K O D E (7 ~ ~
t R = l
I I t s 1
I M m l

201 I = I + l
200 KVsKCH111

1 I ~ J ~ L ~ I ~ t I D ~ I E e I F T ~ K O N , L N f , L P V ~ ~ C P t ~ V ~ I E % t I G T t ~ M 8 t ~ A P

EQUIVALENCE t iopi t i o p (1 t i I J, (N V A ~ ~ ~ A R (it1 1 j , (MFLL~MFL(1 9 1) I

IF (KV-IO) 9 7 ~ 2 8 0 1 ~ 2 0 2
2001 IF(KCP(1)-1 297 ,201 t2062
2002 %F(K~PII)-45)201,291t201
202 I F ~ K V ~ ~ ~ ~ ~ 0 ~ ~ 2 9 7 t 2 9 ~
2 0 5 DO 206 N = % t 6
206 bQOK(N1=10

LV=O
O S LV=LV

IFtLV 9
2070 LOOK(

I = f + a

200

IF(L~930~2181t211
211, GO TO (214,2112,9999963r212)rKZ
212 LRa3

ITlOrO
it9m1
IF lL-6~9000~2121@9000

2121, IT9139
GO TO 9000

2112 1F(L16)903~213r903
213 IT10t-10

LR=3
GO TO 9000

214 IFIL-6)215t903,2179
215 GO T O (2 1 9 r 2 2 0 e 2 1 9 0 ~ 2 2 0 r 2 1 7) e L
217 IFIKPV-710)904,2171~904

2171 KCM(JIrlO
2179 KCH(J)=IOOP(lI

5012 I F ~ K C H ~ I) - 5 0) 9 6 6 ~ 9 6 6 r 5 0 1 0
5011 IF(KCH(I1-101966,5010*966
5010 I = I + l

IF (KCH(J)-209) 299t501t299

501 I F ~ K C H ~ f ~-49~S011~502r5012
502 KPV=J+l

L V = l
J=.J+2
f = I + l
N=O

504 NPN+l
Kl=KCH(1 1
K2=KCP(I)
IF(K2-49)503@506,503

5 0 3 If(K1-49)507,505,507
506 K2=10

507 KCH(Jl=K1+256+K2
LVa2

j0j+1
GO T0(508,509),LV

508 1=1+2
IF(I-ILMS)504,504,966

5 0 5 N=N-1
I = I - l

509 KCH t KPV I =N
1 ~ 1 4 2
GO TO 200

300 IF (KCH1-1003) 221~321,221
221 Me239

N-J
DO 3008 I=l,J
KCHIM)=KCH1N)
n5n-1

3000 M = M - l
f=M+l
IOF=l
Ell1
GO T O 9000

2190 GO TO (2191,22Ot220)@IEX
2191 IV”ln2

LR=? 201

RETURN
219 J [E X = 1

NPV=
222 LR=2

RETURN
220 IT4=4

GO TO 222
2181 fF(KZ-5)21829903,2182
2182 CALL SERCH(NVARl,SO@NV)

IF(L)9309302,301

GO TO(2999903e919~3010),Kt
301 KCH(J)*400+L

3010 IF(LV-1)916e916t3174
302 IF(bV=1)303r303r304
303 GO T0/319,903e919~916l~Kt
304 GO TO ~ 3 0 5 e 3 1 0 ~ 3 1 0 ~ 3 1 0 ~ ~ K Z
305 IFINP)310e310t3051

3051 DO 307 LnlsNP
DO 306 Na193
I F (L O Q K (N I m K P G (N , L t) 3 0 7 , 3 0 6 , 3 0 1

KCW(J1=100+L
GO TO 299

386 CONTINUE

3 0 3 CONTINUE
310 GO T01309e908)eIM
309 1 1 ~ 4

R E A 0 (3 ' I I f) ((M F L f t , M) c M r l , 6) t L o l r N C P)
I M 1 2

IF11)930r3189311
308 CALL SERCH(MFL1,9JtNCP)

311 GO TOf312,314,31693115)tKZ

312 GO T0/3122$3122,3121),1EX
3115 GO T01915r91593173)gIEX

3121 IF(LeI?t)31229319,3122
3122 IF(NP-l0)3120~944e944
3120 NPrNP4-1

DO 313 N = % e 3
313 KPGINeNP)=LOOK(NI

KCH(J)PIOO+NP
GO T O 299

ITlO=MF6(L)
IT9sMF4tLI
GO TO 315

316 LRabRa4
l T l m L

315 IImMF5(L)
GO TO 9008

318 GO T O 1 3 0095093173) BKZ

3 1 4 lRr3

3173 K ~ H ~ ~ ~ ~

202

DO 320 Nm193
328 NVAR4NV,NltLBOK(Nl

KCH(J)=NV+400
GO TO 299

297 KCH(J)=KV
IF (KV-50)29893009298

298 I = I + l
299 J I J + l

969 1 E = 3
966 IE=IE+3
963 IE= IE+13
950 IE= IE+6
944 IE= IE+4
940 I E = I E + 1 0
930 I E = I E + l l
919 I E e I E + l
918 I E = I E + t
916 IEmIE+l
915 I E = I E + l l
904 I E = I E + l
903 I E = I E + 3

1r=3
321 LR=LR+3

END

GO T O 200

9000 R E T U R N

203

PROGRAM SCB

* L I S T ALL
+ONE WORD INTEGERS

SUBROUTINE S C B 1 L R I
DIMENSION I S K (6) e S S K K (S I
DIMENSION I P T (I . 0 1
DIMENSION K C L A (L) s K C L B (1)
DIMENSION N? '8(1 t
DIMENSION D A T A l l . 1
DIMENSION N V A (l) , N V B (l)
DIMENSION K S P (l) , K S M (l) , K S P 2 (l) , K C P I 1) , K C P 2 (1 1
DIMENSION K C H t l) , K S G t l) , NVARt50,5)
DIMENSION L R P T (1 5)
COMMON K O D E / 2 3 8 0) ~ 1 D A T (9 0 ~ 2) , I T (1 0) ~

EQUIVALENCE (N V A R (l r l I ~ K O D E (8 9 1 1)
EQUIVALENCE (K C H (l l , K O D E (5 1 1))
EQUIVALENCE (K S C (l) , K O B E (4 6 1 1)
EQUIVALENCE (L R P f (l l ~ K 0 D E (4 6 1))
EQUIVALENCE(XNX,DA?A(572))
EQUIVALENCE I D A T A (l) , K O D E (2))
EQUIVALENCE (N f S (l) t K O D E (7 5 1 t ~ ~ (I C A R D , K O D E 1 7))
EQUIVALENCE (I P T (l) , K O O E (4 5 1))
EQUIVALENCE ~ I E L ~ I P ~ (~ ~ ~ ~ ~ I A R I I P T ~ ~ ~ ~ ~ ~ ? F L , I P ~ ~ ~ ~)
EQUIVALENCE ~ K P N r I P T ~ 4) 1 ~ 1 L L t I P T (~ ~ ~ ~ t I R P T , I P f l 6))
EQUIVALENCE (IDF,IPT(7)l,(ICC,IPT(8))
EQUIVALENCE ~ I L X ~ I P ~ ~ 9 ~ ~ ~ (I ? H N ~ I P l ~ l O ~ l
EQUIVALENCE (N V A (l) r N V A R (l r 4)) * 1 N V B I 1) , N V A R (1 , 5))
EQUIVALENCE (I S K K (2) , I S K (l))
E Q U I V A L E N C E (K O D E (9 2 2) , T S K K I 1))
EQUIVALENCE (KSP(l)rKODE(462))~(KSM(l)~KODEo),

EQUIVALENCE (KODE1930ltIFX),IKODE(93l)~IFPCI
EQUIVALENCE (K O D E (~ ~ ~) ~ L E T F I B (K O D E (~ ~ ~) , ~ ~ F)
EQUIVALENCE (K C L A (l) , K O D E (9 7 2)) ~ (K C L e l l) , K O D E ~ 1 0 2 2))
EQUIVALENCE (F R C ~ K O D E (9 3 6 ~) , (M t K O D E f 9 3 2)) , (N t K O D E ~ 9 8 4)) ~

l f ~ J ~ L ~ I I ~ I D ~ I E ~ I F T ~ K O N 1 L N f r L P V , N C P ~ N V ~ I E X ~ I ~ l ~ N M B ~ N A P

1 ~ K C P ~ l l t K O D E ~ 5 1 2 ~ ~ ~ ~ K C P 2 o , K O D E ~ 5 1 3 ~ ~ ~ ~ K S P 2 ~ l ~ ~ K O D E ~ 4 6 3 ~ ~

l (K V , K O D E (9 8 5)) , (K S M J , K O D E (9 6 6)) , (K Z B K @ D E (~ ~ ~) ~ ~ ~ N P * K O D E (~ ~ ~)) ,
~ ~ K Q ~ K O D E ~ ~ ~ ~ ~ ~ ~ ~ M M ~ K ~ D E ~ ~ O ~ ~ ~ ~ , (K P V , K ~ ~ E ~ ~ O ~ ~ ~ ~ B ~ J S V ~ K O D E ~ ~ O ~ ~ ~ ~ ~
3(KS9KOOE(1037)),(ND,KODE(l038~)

EQUIVALENCE (I T 7 9 I V 4 7))
? f 7 = 1
L R = l
BO 19 M s l o l O
I SKK (M 40

BO f F (J o 4 9 m 1 ~ 1 0 0 1 0 9 4 6 r 9 4 6
Of KVeKCHI I t

I002 KSMJ=KSM(J I

1009 I F (KSMJ-2231 1 8 0 4 ~ 1 0 0 5 9 1 0 0 4

IF (K V - 4 3) 1 0 0 6 ~ 1 0 0 2 ~ 1 0 0 6

IF I K S M J / 1 0 0 - 1) 1 0 8 4 , 1 0 0 5 ~ 1 0 0 3

204

604 I = I + l
605 GO TO 1 2 2 3 ~ 1 8 7 s 1 8 0 ~ 1 9 0 ~ 1 0 0 6 , 1 3 6 ~ 1 3 2 ~ 8 0 0 ~ ~ K Q
1008 Kt=KCP(I)+2

DO 1009 M=l,KZ
KSGIJ)=KCW(11
J=J+1

1009 1=1+1
GO TO 100

223 IF (KSM(J)-212) 224~1,224
1 NP=O

KQ=KCH (I 1
NO=O
IF (IDF) 2,2918

2 NP=lO*NP+KQ
3 I = I + l

KQmKCH (I 1
IF (KQ-9) 2,294

4 IF (KQ-45) 8 * 5 , 8
5 I = I + l

KQ-KCH t I)
18 IF (KQ-91 6 # 6 # 8
6 ND=lO*KQ

I = I + l
KQ-KCH (I 1
IF LKQ-9) 7,7r8

7 ND=ND+KQ
IoI+l
IF (KCH(1)-9) 961,961~8

8 IF(NP=99)10*10,961
10 GO T0(15~17*12)rIEX
17 GO tO(lStl2),ICARD
12 NPm256*NP+ND

DO 13 M ~ 1 ~ 4 5
IF(NP-NfB(M))13,14,13

GO TO 911
13 CONTINUE

15 I F (N D ~ 9 1 1 ~ 1 6 ~ 9 1 1
16 M=NP
14 KSG(J)=449+M

GO TO 239

IF (IDF) 225,225,226

IOl+l
IF (KCHlI)-9) 225,225,226

226 IF (KCHl1)-45)231~227r231
227 IDF=l

InI+l
228 FRCr.1
229 IF (KCH(I9-91 230t230e2291

2291 IF (KCH(X1-45) 231,2292,231
2292 IF (KCP(r)m501917,231,917

224 XNX=Oo

225 XNXmXNX*lOi+KCH(I)

230 XNX=XNX+fRC*KCH(I)
FRCaFRC/lQe
I=l+1
60 TO 229

IF ~ X ~ X ~ ~ A ? A ~ M 9 9 2 3 ~ 9 , ~ ~ ~ ~ 9 2 ~ ~ 9
2 3 1 BO 2339 M m f l f f ~ l l 9 0

205

2333 KSG(J)rM-791
GO f O 239

IF (XNXmBAtB1N)1236 ,238t256
236 NrN+1
233 KONoKON91

238 KSG(Jl=N+149
239 f D F = O

GO TO 166
$ 0 0 MMaKV-700
801 GO ?0~400~402r449e430r330r706r706r710,912,904~6200~20~820~~M~
820 IF (I O F) 9301962r821
8 2 1 I O F 4

IF (KON=54)23?0~2370 ,933
2370 CALL MOV (N e 5 7 2 ~ 1)

KSG(JI=MM+194
GO TO 4005

7 0 6 KSC(dI=215-2*MM
709 K S P (J) = 4 0 0

GO TO 401
9 1 0 KSGtJls258

K S P / J) = 3 8 8
GO TO 401

412 K P V S K S M f J)
IF 1 K P V - 2 4 3 1 7 1 5 ~ 7 1 4 ~ 7 1 3

713 IF (KPV~2691715t?149?15
714 KSG(J)=400

715 KSGlJ)r231
166 J=J+1

GO T O 100
400 I A R m l

1 cc=o
K S G (J ! + 2 2 2

4805 K S P (J) = 2 6 5

GO TO 166

401 J=J+2
GO TO 100

402 J S V a J
fFb=IFL+1
J=J+1
KSG1J)=265
GO YO 400§

450 K V m 2 4 2
4501 I F (ISK(LLI1 4502,902,4503
4503 LL=LL=2

K ~ ~ ~ ~ ~ ~ 2 6 ~

206

4508 I F f I A R) 406e406fi405
449 L L t L L + l

lSK(LL)=-1
I F (KSM(J1-268) 4492,4491,4492

4491 JaJ-1
4492 I F ((KSG(JSVI-ZQ?)/6-1) 90294490t902
4490 KV-241
465 KSG(J)=266

J=J+1
I A R s O

4060 KSG(J l r266
J=J+1
GO TO (4061 ,879 t4061)~ ILX

4061 KSG(JI r268
J=J+1
K S G (J 1 r K V

4068 I F (N V I 930,4067~4063
4063 00 4066 N m l t N V

4064 I F (NVBt N 1 4065,406694066
4065 N V B (N) + 1
4066 CONTINUE
4067 GO TO ~ 4 0 0 5 ~ 9 0 2 ~ 8 7 8 ~ 1 9 3) e I l . X

406 I F (I LX-4) 4060t4068,4060

I F (I L X - 4) 406494065,930

1 3 2 I F l IFL)902t902,133
133 K S G t J S V) = K V

KSG(J)-266
JnJ41
KSG t J) 0262
GO TO 4005

136 K S G l J) = K V
MtKV-400
SF (M) 166,166,1779

1779 I F (N V A (M) + N V B (M)) 1 7 8 2 9 1 7 8 1 f i l 6 6
1781 I F IKSM(J)=204) 178091900e1780
1900 N V B (M l a 1

NVAtMInl
GO TO 166

1780 !4VBfM)=-2
GO TO 166

1782 N V A (M) = O
GO T O 166

330 IF(Jn1)962w331t962
331 I R P T a 2

IS=4O1
R E A D (5 s l I) l L R P T t J) r J m l r 1 5)
J=15
M=30
GO TO 1900

180 KSrKV-36
GO T O I 7 8 8 ~ 1 8 8 ~ 1 8 8 ~ 1 8 1 ~ 1 8 8 ~ ~ 7 2 ~ l ~ 3 ~ 1 8 4 ~ 1 6 5 ~ 1 7 3 5 ~ ~ 7 0 ~ 9 6 2 ~ 9 6 ~ ~ @ K S

$78 I F tISKtbL)) 894,9029872
872 bL=LL-2

ILXei!
GO T O 484

894 IbX=3
KVaf42
bL=tL- l

2 07

60 TO 404
878 JoJdsf

8 ~ ~ 1 9 3 ~ 1 ~ 8 7
118’3 IF IKCP(I ’?I 1188~187sll88
1188 KVr46

1-37] 188,769,168
7 8 9 KSG(J)=298

I s f + l
GO T O 88

181 IF tKSM1Jl-2661 182,168r1811

182 KSGld)+251

184 I F (IFX! 930,1843,1841

1811 IF (KSMIJI-2681 1689182,188

GO T Q 88

1841 IFPCSiFPC-1

1842 I F X = O
1843 KPNSKPN-1

If (IfPC) 962,1842,1843

188 KSG(J)=KV+222
8 8 J=J+1

3.87 1 ~ 1 4 1

183 IF (I F X I 938,1832,1631
GO TO 10

1831 IFPCmSFPC+1
1832 KPNSKPNcl

GO TO 188
185 I f (KCP11)-9) 186r186fi187
186 IDf=l

GO TO 18’7
172 00 178 NslvNV

fF(NVB(N)~1721e~78~178

68 TO 188

GO TO 188

17221 N V A (N) = l

) 1 ~ 4 ~ 1 ~ 4 ~ 1 ~ ~ ~

GO ‘T’Q 4490
194 DO 175 Ms1,NV

IF(NVB(M))1’7449175,195
~ ~ 4 4 ~ V ~ ~ ~ ~ ~ 1
175 CONTINUE

196 ~~~~~C~~~

208

193 IF IIFL) 930,196,194
194 80 195 MtlsIFC

KSG(JIm266
195 J=3+1
196 IF (IRPTI 19891989197
197 KSG(J)=268

KSPIJIr212
KSP2(J)*35S
KSPZ(J+ll=266
J= J+4

198 KSG(J1-99
1985 If fKSG(11-276)2020203,205
202 IF IKSG(1)-275~205e203,205
203 GO T0(204,937,937)rIEX
962 I€-1
961 IEaIE+lS
946 1E*IE+9
937 IE*IE+4
933 1E*IE+3
930 fE*IE+13
917 IE*IE+6
911 I€oIE+6
905 IE*IE*l
904 IE*IE+2
902 IE=fE+2

LR=LR+l
204 LRtLR+l
205 RETURN

END

2 09

PROGRAM STK

*LIST ALL

DIMENSION KCQP(3)
DIMENSION N V A R (S O e 5 1
~ I ~ E N S I ~ N KOP(11
DSMENSION LGO(1)
DIMENSION K P L 1 1 0 0 ~ ~ K S G ~ l) ~ L 1 M (l O ~ I
COMMON K O B E (2 3 B O I ~ I D A l / 9 0 ~ 2) , r t (l O) ~

EQUIVALENCE (KSC(1I,KODEI461))
EQUIVALENCE tLIM~l)tKODE(4511)
EQUIVALENCE (KQP(l)eKODE(551))v(LCaKODE~75011
EQUIVALENCE lbC0(1)#KODE(796))
EQUIVALENCE (NVAR(l,l),KODE(891)),(NPV,~ODE~6~)
EQUIVALENCE (N U F , K O D E (~ ~ ~) ~ ~ (I F A , K O D E (~ ~ ~)) B (I P F , K O D E (~ ~ ~ ~)
EQUIVALENCE I K V t K O D E f 9 2 6 1 1 ~ (N U , K O D E O
CALL D A T S W (6 e M Z)
GO TO (5 0 2 0 e 5 0 3 0) e M Z

1 I S J S L V I f B ID, I E v IFT ~ K Q N B L N T vLPV PNCP ,NV e IEX , I GtrNMB ,NAP

5020 WRITE(1#5021) (KSC(MM),MMPL,J)
5021 FORMATtZOI49
5030 CONTINUE

18 Js1

KCOP13jr264
K T = O
lEB=O
L O O
K =O

IF (KP-268) 2002,699,2002
201 M M o l

699 IFM=l
700 KQaKPL(KI

701 IF (KQ-2201 f 0 6 + 7 0 6 ~ ? 0 2
702 DO 704 N m l o 3

704 CQNPlNUE

705 IF llEBI 930,901,2001
704 IF (IEBt 930r2001~921

755 fFMr3

IF (KQ-1101 2001~2001,701

SF (KQ-KCQP(N)) 9049706,904

IF tK9-2681 705e7069705

2001 GO '78 t 2 0 0 2 e 2 2 5 1 ~ ? 5 6 1) , 1 F M

K K % ~ L l ~ ~ ~ ~
IF IKKX-2720 757,708~157

3561 ~ E ~ ~ I E B ~ ~
3 5 9 K=K+T

K ~ ~ ~ K ~ ~ K K %

fIONt 4s SUBSCRIP? 9 5 s (c 6 8 1 9 7s E
921992239906) , IK

210

GO T O 333

GO TO 120%~209~206~206~205~206~206~906~~IK

IK=3
GO TO 211

GO TO 202

2041 IK=JB

205 KSGIJ1=259

206 J.J+1

208 K2=0
2085 K=K+1

KPL(K)=271+K2
IF (KSG(J+1)-2651 2091,210,209

209 IF (IK-4) 2091e2092~2091
2091 L=L+l

LIM(L)=270+K2
Jn J + 1
GO TO 201

2092 K=K+1
KPLIKlnKSGIJ+l)
J+J+1
K=K+1
KPL(K)+27O+K2
GO TO 204

210 IF (K2) 2101~2100~2101
2100 L=L+1

LIM(Llr271
GO TO 2102

LIM(L+2)=270+K2
L=L+2

2102 J=J+2
GO TO 201

2101 LIM(L+1)=265

211 1 F (K S G (J ~ - 2 0 9) 2 1 1 ~ ~ 6 0 1 ~ 2 1 1 0
2110 IF (KSG(J1-2681211lr3033~2111
601 M=KSGIJ+1)+2

DO 602 N=l,M
K=K+1
KPL(K)=KSG(J)

602 J=J+1
K=K+1
KPLIK)=210
GO T O 201

2111 IF LL) 908,218,213
213 IF (IK-2)909,218,217
215 I X K n l

GO TO 755
2165 IF (L) 908,216,217
217 CONTINUE
788 IF (KSGtJ)-269) 800,305,800
800 IF 1KSG(J)-264) 801,603t2173
801 IF (bIM(L1-270) 2173t21608010

8010 IF /LIM(L)-272) 2173,8029962
802 SF (LIM(L-1)=265)216,2173,216
803 I F (LIMIL1-270) 804,2169962
804 I F (LIM(L)-265) 962,805,962
805 IF (L-1) 2181~2b61,006
806 MMaL-l

DO 8 0 8 KKsleMM
211

NN=b-KK
IF ~ ~ I M ~ ~ ~ ~ ~ 2

807 IF ~ ~ L I M f ~ ~ ~ ~
8032 IF(KSG(J)-266 962r2185t962

NN)-2421 962r80729962

809 IF IKSG(J1-264) 218192181r2185
2133 I F (K s 6 [J) - 2 5 8) 2 1 7 7 ~ 2 1 7 4 , 2 1 7 7
2174 IF1KSGIJ~-tXMIL))2181~2181~2175
2175 IF(LtM(b)-25112176,218~~216
2176 Ie(LIM(L)-249)2L6,2181,216
2 1 9 4 IF(KSGIJ)-IIM(L))l217,216t216
1217 IF (L1M(LI-262)1218,1219~1218
1 2 3 8 IF lhlM(b~-260~218,1219~21~
1219 IF IKSG(J1+1=LIM(L)) 218,216,218

2 1 8 1 L=L+P
218 CONTINUE

LXM(LI=KSG(JI
IF ~ K S G ~ J ~ ~ 2 0 9 ~ 3 0 1 1 ~ 3 0 2 ~ 3 0 0 2

3002 I F I K S C ~ J ~ ~ 2 0 7 ~ 3 0 2 ~ 3 0 2 ~ 3 0 0 1
3001 SF (KSG(J)=2221301,302r301

3011 IF 1KSCIJ)=4199) 302,302e2185
301 IF IKSC(J)-223) 3011,302*3011

302 K2=2

303 IF (LIM(L)-2?1) 3031t962~3030

IEB=IEB+l
GO T O 2085

3038 IF 1LIMlt-f)-2651 3032,2185t3032

3032 IXKt2

3033 IF IL) 908,2184,303
3034 IF (L-11 2185t2185,806

3050 IF ltIM(b)-265) 3051,9629962
3051 % X K a 3

3052 IF IL) 9 0 $ ~ 9 ~ ~ ~ ~ 0 5
2184 K = K + 1

2185 J=J+1

3031 I F I L I M (L) - ~ ~ ~ ~ 3032,30349303~

GO TO 755

305 IF (LIM(L)-271) 3050,21859962

GO T O 755

KPL(K)=268

GO TO 281
2119 IF (L) 9089908~220
220 IF (L!M(L)-2651 222,221,2201
281 I F ILIM(L)-291) 222,2202,222

2202 K m K a l

221 I-=L-1
KPL[K)=2?0

212

KV=K
I =KV
C A L L ~ ~ ~ ~ W (6 ~ M ~ ~
GO YO (5 3 9 , 5 6 1) t M E

559 W R I T E l f , 5 6 0) 1 K P L (M) , M r l , K V)
5 6 0 FORMA?(20159
5 6 1 CONTINUE

333 J B - 0
GO ?O 9 1 4

I F (K ? ' ~ = 3 0 0) l r 2 1 t 2 1
1 I F (K ' T = 2 6 5) 2 , 2 5 t 2
2 IF (KT-266)3 ,26 ,3
3 I F (K T - 9 9) 4 @ 2 7 * 4
4 I F (K ? - 2 4 3) 5 * 2 4 t S
5 I F IKT-258)22,6 ,6
6 I F (K T - 3 0 0) 2 3 * 2 8 * 2 8

2 8 J B n J B 4 1
27 J B = J B + l
2 6 J B = J B + l
2 5 J B - J R + l
24 J B = J B + l
23 JB= JB+1
2 2 J B = J B + l
2 1 J B = J B + l

GO TO (2011,20411tMM

30 I f (K P L (l l - 2 6 3) 4 0 r 4 0 ~ 4 1
40 I F (K P L l l) - 2 0 9) 4 2 t 4 1 e 4 2
42 IF(KPLll)-200)41,964*964
4 1 00 3 1 N t 1 ~ 1 0 0
3 1 K O P t N l o 2 0 0

36 L I M (N) m K P L (N)

9 1 4 I F (K - l 0 0) 3 0 , 3 0 t 9 4 6

DO 36 NP1eKV

M+LPV+l
I F t M - 1 2 8 1 3 3 r 3 2 t 3 2

32 I F (L G - N M R) 3 5 r 3 5 * 3 4
3 4 LG=NMB
3 5 M=M-127
33 LGOLNMB)=128+LGO(NMB)+M

L=O
J=1
N U F n I
[FA-0
1pfm1
KVa I
NU1430
RETURN

964 I E = 2
9 6 2 I E n I E 4 1
9 4 6 1 E a I E + 1
930 I E - 1 E 9 9
9 2 1 % E s I E + l
909 IEmIE+1
9 0 8 I E s I E 4 2
9 0 6 IE=IE+5

213

PROGRAM CDR

2420 IF (KPLM2(J)-270) 2 4 2 4 ~ 2 4 2 1 ~ 2 4 2 4
2421 JaJ-2

2424 Ma2
GO YO 2 5 9

253 KsJ-M
MmL-1

2531 IF (KOP(M)~254)2594,2532,2534
2532 IF (KOA(M)-KPL(K))2534~2533~2534
2533 IF (KOA(Mt-431)810,2538,2538
2538 GO T O (814@813),NUf
813 NU=NU-l

NUFol
014 LIL.12

KQ=l
2536 LaL+1

2534 KOP(L.I=UXX
810 GO TO (2 4 2 5 a 2 5 3 7 , 2 5 9 ~ 9 1 0 , 2 6 2) ~ J X

KOA(L)=KPL(K)
KSVtKXX
KQ=l
IF(KXX-255)754~2800~911

2800 IFtKOA(L)=431~2536~2801~2801
2801 KOP(LIr256

GO TO 2536
754 IF ((KXX-239)/2-1) 756fi504g756
756 K*1

753 KXX=KPL(J)
GO YO 489

GO T O 253

KOP(L)=KPL(J)
KOAIL)=KPLMl(J)

IF (KOAMtLI-431) 244,243,243

2425 Km2

520 KfI=l

243 KII=KII+l
244 IF (KOA(L)=431)246a245#245
245 KII=KII+l
246 L=L+1

NUF=1
IF (KII-2) 2491,249,248

248 NUSNU-1
249 IF (NU-430)2491~2491r2490

2490 IF 1KOPM(L)-255) 2491,2492~2492
2493 NU=NU+1

NUFo2
2492 KOP(L)r2!54

KOA (L) aNU
MI J-K
KPL (MI =NU

250 M=J+1
0 25% I ~ ~ B K ~
Kaf-K
Pb(fK)=KPL(f)

KVmKV-K
J=J-K+%
GO T O 24

215

498 CONTINUE

M m O
IF tK~4~0l~4901~4902

Me2
KOPlL)=Z55
KOALLIr430
IRT=Z,
GO TO 659

4900 L=L+L
KOP(Ll.212
GO TO 491

4901 KmLPV

4902 fFIK=NM8)4903~4903~4904
4903 MMmO

rF(K1LGt4909~490694906
4906 MM+127
4909 K r b G O t K) - L 2 $ w (L G O I K) / l 2 $ ~ + ~ M

4904 K m O
4905 fF(K+IEX/2-11911~510~491

GO T O 4905

491 KOA(bl=244+K+M-(L+LPV1

500 IF I(KSV-207)/6-1) 509~5689509
504 MZrLLSV(IFA1

IFAnIFA-1
IF I I F A) 912,5055~5055

5055 KOA(MZ)~L+486-(KSVsMZ)
KOPll)=212
KOA(LIs244
IF I K S V - 2 4 2) 5 ~ ~ ~ 5 0 $ 1 ~ 5 0 8

GO TO 510

5 8 8 If(KV~89)5080~5088t946
080 IFA=IFA+l

L L S V l f F A) = L

G O T 0 250

5091 MMsKOA(L1-400
DO 5092 K m l . 9 3
L=b+l,
K O A ~ L ~ ~ ~ V A R (~ ~ P K ~
GO TO 518

805 IF tJ-5) 806,806~259

508% K=J

409 IF IKOP(L)-204) 5 1 0 ~ 5 0 9 1 ~ 5 2 0

(s l) - 2 § 1) 2 5 9 9 2 5 9 ~ 2 5 8

216

2592 K=4+NQ
KOA(L)=KPLM4(J)
L=L+1
KOAIL)=KPLM2(J)
IF (KOA(L)-4301 7 8 1 ~ 1 8 1 ~ 7 8 0

780 NUaNU-1
781 L=L+l

KOA(L)SKPLMl(J)
IF (KOAfL)-430) 7 8 3 ~ 7 8 3 ~ 7 8 2

782 NUSNU-1
783 IF (N Q) 2 5 9 4 ~ 7 8 3 0 ~ 2 5 9 4

7830 L=L+1
NUF=l
NU=NU+1
GO TO 2492

GO TO 250

IF (J V) 9 6 2 ~ 9 6 2 ~ 2 6 2 0

2594 J=J+2

262 JVmJ-2

2620 IF lKPL(JV)-270) 962~290*2621
2621 IF (KPLlJV) -430) 2809280~962
280 KOP(L)=254

KOA(L)=KPLM2tJ)
K = 3
GO TO 250

510 K=2
GO TO 250

290 IF (K Q) 2 9 0 1 ~ 2 9 0 1 ~ 2 9 0 2
2901 KOP(L)=255

KOA(LI=KPLMl(JI
L=L+1

2902 KOPtL)=234
NQ=3
J=J-2
GO T O 2599

GO TO 4501

GO T O 4501

KT1202

MaJ-K
IF (KPt(M)-273) 460~451r459

4 5 1 KOP(h1sKT
GO TO ~ 4 5 1 1 ~ 4 5 1 1 ~ 4 5 1 0 ~ 4 5 1 1 ~ r J X

L=L+1

SF (IK1 ~ 5 1 ~ ~ 4 § 3 2 ~ 4 S 1 5

~~M~~

400 JX=2

331 JXm4

450 JXa3

4501 DO 460 K 1 2 ~ 3 0

4510 KOAlb)=KPL(J)

4511 IK=Km2

4515 DO 453 N ~ ~ P I K

334 I F t K O ~ ~ L ~ ~ 4 ~ ~ ~ 4 ~ 3 ~ 4 ~ ~ ~ 4 5 2
45% N U ~ ~ U r n l
453 L=L+1

(453194531~2491~4533I,JX
+ ~ ~ I K ~ ~ 5 3 ~ ~ 2 4 9 1 ~ 4 5 3 0 217

4530 GO To (9 6 5 9 9 2 4 1 ~ 3 X
4533 K=Ka

2,962,2491,9629,JX
459 GO f O (4609460,4591,460),JX

458 KOP(b)=255
KOA(L)=KPL(M)
brL+1
NUsNUal
KOPlblr254
KOA (L 1 =NU
KPL(MI =NU
L=L+1

460 CONTINUE
GO TO 921

263 IRT=l
659 IF: 4IRY-IFA) 660,660~662
660 DO 661 MM=DR?BIFA

MZ*LLSV(MM)
661 KOA(Mt)=L+244-Mt

XFAnl
662 GO TO (273~4900)@IRt
274 1 R T = 2
273 M X t = O

L=L-1
K = J

2 9 5 MXT=O
I F (L - IPF) 287e2751~2751

2791 DO 278 KK=IPF,L
KOK=KOA(KK)
If ((KOK-412)/19-1) 278,216,278

276 KOKnKOK-430
NVT(KOK)=l
IF (KOK-MXTl 2 7 8 t 2 4 8 r 2 7 1

4591 IF (KPL(M)a400)458,460r460

2 7 9 M X V r K B K
2 1 8 CONTINUE

1F OMXT-19 28?$2?9,288
279 KOPIL+$)n257

GO TO 2 8 1
288 t=Lal

K O A ~ ~ ~ = 4 ~ 1

218

264 K O D E ~ L) ~ l K O P ~ J ~ - 2 0 0) * 5 1 2 + K O A (J)
380 RETURN

RETURN
923 IE.123

965 1E=3
962 IE=IE+16
946 IE*IE+22
924 IElIE+3
921 IEtIE+9
912 IE=IE+l
911 IE=IE+l
909 IE=IE+lO
910 RETURN
930 1Et30

RETURN
END

219

PROGRAM GETOP

KODE
KOP
KOA

'KP
1
J
f E
GETOP

LOOP

ENT GETOP
EQU /"IFF
EQU 175FF
EQU 175fE
EQU 175P9
EQU 1 7 5 F S
EQU 175F4
EQU 1 7 5 F O
De 0
bD ZRO
S b r
A ONE
STO L 2
b B L 2 KOQE
SR'P 9
STO L KOP
LB ZRO
S b t 9
STO L KOA
LDX 2 43
L D L 2 OPT8
SRT 8
S L KOP
02 MATCH
MDX 2 -1
0
MOM L
0 I

SLT
STO b
L D
SLT
STO L
0 1

ZRO DC

D e
Be
DC
DC
DC
DC
86
QC
DC
BC
DC
D
D
DC
DC
DC
BC
DC
DC
96
DS
DC

2 2 0

LOOP
IEe20
GETOP
ZRO
4
J
ZRO
4
KP
GETOP
0
1
0
10111
10228
10310
/0430
10540
/0640
10940
10C54
10034
/OES4
/OF54
11054
11154
11254

119764
/ I O 6 2
1 1 E 6 2
/ IF62
12062
/2162
12263
1 2 3 6 3

RTN
JMP
PAUSE
SET
TYPE
PUNCH
TYPEOUT
GOTO
L f
GT
EQ
NE
GE
LT
A R R A Y
SH 8 FT
M I N
MAX
INTERVALS
SUMF
LAST
LN

GETOOOlO
GET00020
GET00030
GET00040
GET00050
GET00060
GET00070
GET00080
GET00090
GET00100
GET00 110
GET00120
GET00130
GET00140
GET00150
GET00160
GET00170
GET00180
GET00190

GET00210
GET00220
GET 00230
GET00240
GET00250
GET00260
GET00270
GET00280
GET00290
GET00300
GET00310
GET00320
GET00330
GET00340
GET00350
GET00360
GET00370
GET00380
GET00390
GET00400
GET00410
GET00420
GET00430
GET 00440
GET00450
GET00460
GET00470
GET 00480
GET00490
GET00500
GET00510
GET00520
GET00530
GET00540
G E Y O0550
GET00568
GET00570
GET00580
G E T 0 0 5 9 0
GET00600
GET006 10

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
E ND

1 2 4 6 3
1 2 5 6 3
/ 2663
/2763
/ 0 7 8 0
/2F52
/3052
1 3 1 5 2
1 3 2 5 2
1 3 3 9 2
13956
1 3 8 5 1
/3A65
/3B53
/ 3 c 5 3
1 3 0 5 3
/3E93
/ 3 F 5 3
13655
/ 3 7 5 1

ABS
TANH
SUM
MAGNITUDE
TAB
S I N
cos
EXP
SQRT
NEG

LOAD/FREE
FREE

+U
+ *
/
+
i

STORE
LOAD

GET 0062 0
GET00630
GET00640
GET00650
GET 00660
GET 006 7 0
GET00680
GET00690
GET00700
GET00710

GET00740
GET00750
GET 00760
GET00770
GET 0 0 7 8 0
GET00790
GET00720
GET00730
GET00800

221

PROGRAM RTN
* L I S T ALL
*ONE WORD INfEGERS

SUBROUTINE R T N (L R I
DIMENSION N T B (2)
DIMENSION I A A (2) p I A C (2) e I B S (2) 9
DIMENSION I A C T (1 0 9 5)
DIMENSION 18
COMMON KODE(9 I D A T (9 0 r 2) 9 I l ' (1 0) ,

1 I t J ~ L ~ ~ ~ ~ I D ~ I E ~ I F T ~ K O N ~ L N f ~ L ~ V ~ ~ ~ ~ ~ N V ~ I E X ~ I G T ~ N M ~ ~ N A P
EQUIVALENCE I J S , I f (9)) 9 (J N , I T (1 0))
EQUIVALENCE (I A C f (l , l) r K Q D E (4 5 2)) , (I A A (l) 9 I A C T (1 9 l)) e

EQUIVALENCE ~ I D S ~ l ~ r I D A l ~ b ~ l ~ ~ ~ ~ I D L ~ l ~ r f D A t O ~
EQUIVALENCE (L A C , I D A T (9 0 , 1)) r (L T , t D A f (9 0 , 2))
EQUIVALENCE (K P e I T (7 1)
EQUIVALENCE 1 N T 8 (1 ~ ~ K O D E (7 5 1)) ~ (I C A R D t K O D E (7 l)
LR= 1
GO ? 0 1 1 e 1 0 0 , 2) r K P

C (I A C (f) , I A C T (l r 2))

100 LE-fE
388 I E m 0

101 M=ID+KODE(IDI
1 IF 1 B-11939 @ 94 1 9 10 1

N=KODE(ID+31
I F (N) 9 3 0 9 2 0 1 t 2 0 0

KODE (M I SO
208 DO 2 0 K s l r N

20 MmMs1
201 J * K O D E (I D + 1) * I D = l

I F (M - l " J l 2 2 9 9 0 ~ 9 3 0

DO 28 KmM,J
bA=KQOE(KI
I F LA) 23 28 923

23 I F (I F T - L A) 2 5 * 2 5 , 2 4
24 I F T r L A
25 CALL AJS(I D S (L A) # 1 D L (L A) 9 0)

26 K O D E (K I ~ 0
28 CONTINUE

209 IFT=IFT-l
98 bA=KODE(10+5)

2 2 fFT+IFT+l

I F (t E) 2 0 9 9 2 6 , 2 0 9

KODEIID+S)=O
J=KODEI ID+6)
KODE[ID+6)=0
M=KODE61D+4)
~ A ~ (~ ~ ~ ~ I A C (~)

1%. I D s X A A (6 A I
12 IJfD+d

1 3 CALL AJS(LAC,LT, l)
14 GO f O (1 5 9 1 7) @KP

! F (L A C) 9 3 0 9 1 3 9 1 4

222

3 9 1 E = I E + 9
3 0 1 I E = I E + 3 0
3 0 7 KPm2

LErlE
IF (I D - l) 2 r 2 ~ 3 0 8

2 I F (1 E - 2 9 1 8 0 r 2 9 r 8 0
29 W R I T E (l r 2 9 0) L N f

2 9 0 FORMAT(26H ** EXCEEDING DATA AREA - r I 4 t 1 9 H WORDS AVAILABLE **I
GO TO 8 3 0

80 II=600+1E
R E A D (5 ' I I l I B r I S
K - I S - I B
I F (K) 8 3 0 r 8 3 0 , 8 1

R E A D f S e 1 1 ~ ~ 1 6 F (M ~ r M ~ l r K ~
W R I T E (l n 8 2) (I B F (M) r M P l r K)

I F (I E = 5 4) 8 3 0 r 8 2 0 r 8 3 0

8 1 I I = I B

8 2 FORMAT(4H * * r 3 8 A 2 1

8 2 0 GO TO (8 4 5 r R 2 1 t B Z l) t I E X
8 2 1 1 I = I E X * 1 1 7 0 + 1 0 8 1

R E A O f l ' I I) f K O O E ~ K ~ ~ K ~ 1 r 1 1 4 0 ~ r ~ I T ~ N) r N ~ l r 2 O ~ r ~ I T ~ M ~ r M ~ 2 2 r 2 6 ~
I T (8) = 1

3 1 LR-LR+l
3 2 LR*LR+l

8 4 M=NTB1NM6) /256
N+NTB(NMB)-256*M
AA.M+rOl*N
I F (A A) 8 4 0 0 8 4 1 r 8 4 0

8 4 0 W R I T E (l t 8 5) A A

GO T O 8 2 1

30 I F (N M B - 1 1 3 2 r 3 1 t 3 2
045 NPV*O

RETURN
830 GO T O (3 0 r 8 4) r I C A R O

8 5 FORMAT(22t l +* STATEMENT NUMBER r F 5 0 2 r 3 H **)

8 4 1 IF 4 NMB-1 1 8 4 2 ~ 8 4 0 r 8 4 2
8 4 2 M ~ N T B (N M B - 1 1 / 2 5 6

N = N f R I N M B - l) = 2 5 6 * M
AA-M+ a 0 l * N
W R I T E (l r R 4 3) A A

GO T O 8 2 1
END

8 4 3 FORMAT (2 2 H ** STATEMENT NUMBER r F S r 2 1 6 H +1 **)

223

224

22

23

24

25

26

260
2 1

20

29

3 0
31

33
34
35

350

351
352

36

37

38
39

40

403

fF(ICB(K))22+23,22
CONT I NU€
GO TO 930
DO 24 J t l ~ 3
NP IP+J-2
IACT(K,JlrKODEIN)
ICB(K I =JF
ICC { K 1-1 LP
NAP=NAP+l
N* JF+

22 5

IRIP=IP-%D
41 J=O

fF(lCB(K))930#46042
IF(ICB(K)-JF)46 948 943 42

43 IFtJ)930e45944
44 I F ~ I C R (K l m I C B ~ J ~) 4 5 ~ 9 3 0 ~ 4 6
45 3sK
46 CONTINUE

47 K=J
IF(J19309930047

CALL MOV t (J F + 1) / 2 , (I C B (K) + 1) / 2 , t C C (K) / 2)
ICB(KI=JF

48 JF=JF+lCC(K)
N=N+1
IF(N=NAP)4194901e930

4902 ID=ICB(IRfD)
I a I D + I R I
IP=ID+IRI (P

49 IF(JF+ILP-ll41)2lr9520952
952 IE+1
951 I E r S E + 1
950 IEsIE+3
948 IE=IE+1
947 IE=IE+3
943 1E=IE+l
942 lE=IE+4
938 IE=IE+7
931 IE=IE+l
930 IE=IE+30

RETURN
END

22 6

PROGRAM STV
+ L I S T ALL
*ONE WORD INTEGERS

SUBROUTINE STV
DIMENSION I C B ~ ~ ~ ~ ~ ~ D S ~ ~ ~ S I D L ~ ~ ~ ~ K C H ~ Z ~ ~ ~ ~ D A T A ~ ~ ~ ~ X K ~ ~ ~ ~
DfMENSION KCP(2)
COMMON K O D E ~ 2 3 8 0) , I D A T (9 0 ~ 2) r l f (l O) r

EQUIVALENCE (KOP*IT(l)) ~ (K O A ~ I T (2) ~ ~ (J S t I T (9 ~ ~ ~ (J N t I T (l O) ~
EQUIVALENCE (k O D E (2) + D A T A (l)) , (X N X I O A T A (5 7 2 1)
EQUIVALENCE (I D S (1) , I D A T (l r l)) ~ (I D ~ ~ l) , ~ D A T (l t 2))
EQUIVALENCE(ICB~l~~KCH(90))~(ISLH~ICB(l6)~
EQUIVALENCE(KCP(lI,KCH(21~
EQUIVALENCE (KCHl,KCH(11)
NN= 1
I In501

¶ I e 9 ~ L ~ S f ~ I D ~ I E ~ I F f ~ K O N ~ L N T t L P V t N C P ~ N V ~ I E X ~ I G T ~ N M ~ ~ N A P

R E A D (S ' I I) (I C B (K I ~ K ~ 1 ~ 5 0 ~
1F(KOA/¶0O14)938,1,938

LCIKODE(K)
IF (LC)930,2,4

1 K=KODE(ID)+KOA+fD-401

2 IF(89-IFT)931,932,3
3 IFT=IFT+l

tC= f FT

JN*IDL(LC)
CALL DATSW(lS,JSW)
ICNT=219*JSW-l39
N.31
DO 72 M t 1 * 3
l = I + l
KlrKODEt 11 1256
K2=KODE~~)-256*Kl
KCh(N-ll=ICB(Kl+l)
KCH(N)=ICB(K2+1)

W R I T E (1 ~ 9 0 1) 1 K C H (M) # M t 3 0 , 3 S)
901 FORMAT(7H ENTER ,6A1)

GO TO (73r74)rJSW
73 11.484

R E A D (5 ~ 1 1) l I C B (K I e K + 1 , 1 6 ~
GO TO 75

74 IKB(l)=40
IKB(2 1945

KODE(K)SLC
4 I T l = O

72 N=N+2

IKB t 3 1 r 4 6
IKB(41015

500 GO tO(5,SOl)sJSW
501 IF(LMN-~CNT)380,5r380
400 PAUSE

5 LSSaM
GO TO(60e61)rJSW

6 0 R E A D 1 2 # 9) (K C H (M J) r M J s $, 8 0)
7 FORMAT(ROA1I

LMNaFlO
DO 9 JsE980
BO 8 Kslvl6
IF(KgH(J)-ICB(K))8,80,8

227

GO TO 380

I F (K-$6)9 0 8

IF(KCP(J1-l
CONTINUE
GO TO 90

61 DO 62 M J l l e 6
6 2 KCH1MJ)=10

88 KCH(39 oK-1

81 LMN=J

CALL KYBRD(KCH11
JaJ-1
IF(KgH(J1845)380,6040~80

604 lMN*J
KCW(J 1 a15
K f J I I
I F K I 15 o 1 5 9 6040
DO 609 J ~ ~ o K
MdPO
KVoKCH (J I
IF(KV=~016090609r605

605 I F 1 K V - 5 1 ~ 6 0 6 t 6 0 8 0 3 8 0
606 DO 607 M J P P B ~

IF~KV-IKB(MJ~~607t608~60?
607 CONTINUE

GO YO 380
608 KCH(JI=MJ+10
609 CONTINUE

90 DO I1 J-1rLMN
IF(KCH(J)~10120,11032

11 CONTINUE
IF(LMN-ICNT 1380t59380

12 I F (KCH(Jl-15 120 015 1380
15 GO T0113001500431 ,NN

26 I s I C T
17 GO TO4 171017Of oNN

1 5 0 I F (f G T) 1 7 9 1 h 1 6

170 CALL A J S (I D S (~ C) O I D L (L C I ~ ~)
171 CALL A J S (I D S (~ O) ~ I D L (~ O ~ O ~)

388 TF(M)18r18 t381
383 GO T01382+39)0JSW
382 YSL.55

JS= I DS d LC)+M

RETURN

18 WRITE(1,191
19 FORIU(AT(23t-4 ILLEGAL INPUT, REENTER9

20 GO T O (2 0 0 r 2 1 0 0 ~ 2 1 0 0) t N N
GO TO 140095)rJSW

208 CALL A J S (I D S (L . C) O I D L (~ C ~ O J N + L N T I
IF(IE1900021t900

N r 2
100 X N X = O o O

228

230

24

241

240
242
25

250
24

240

2701
2702
27
28

29

290
291

34

379
3800
3807
3803
3801
3802
3810

3804
39

403
40

40%
402

4%

4 3

50

MM=2
K = 2

K.1
d*J* l
KC=KCH(d)
IF(J-LMN)240+240~379
GO TO(242*242r260127l~K
1f(KC110)24+250,25
ff(KCm12)250r269250

K*3
GO TO 241
FRC=el ,
K*4
IF(Je2)2702,23Q2r2?01
IF(KCH(J-Z)-10)27,2702,~702
IF(KC-10)28~380,380
IFIKC-10)28,29*29
XNX=XNX+FRC*KC
FRCsFRC/lOe
GO TO 241
KC KC-9
GO TO(290~38Qr980r290~5O~29O~~KC
ITl=l
u= 1
GO TO 3803
JsJ+1
I F ~ J ~ L M N ~ 2 1 0 0 ~ 2 1 0 0 ~ 5 0 0
GO 10(3800t380),JSW
Itlnl
K*2
GO T0(3802,3801)rMM
XNX=-XNX
IF(M=JN)3810~41,41
CALL MOV 13S1572e1)
JS=JS+1
M=M+l
NN- 3
GO T013804951,K
GO f0(36,930@930936t930,43),KC

eo TO(299380)rK

WRIfE(1940)DATA(K9
F O R M A ~ ~ 2 3 ~ REENTER NUMBERS AFTER ,F1204)
GO TO 5
WRIfE(le402) QATAtK)
FORMAl'l22H REENTER NUMBERS AFf€R,ElSe6)

MN* 1
~ ~ (1 ~ ~ 9 ~ 0 ~ 9 ~ 9 ~ 9 Q O
JNsJN-M

K= 1

229

52
56
5 3
54

5 4
57
58

59
6 8
63

64

65
6 6

67
938
931
930
929
900

1 0

91

IMF-0
KC=l
J=J+1
IF(JoLMN)52e52r380
IF (KCW(db-18 58 ~ 5 4 ~ 5 6
IF(KCH(Jf-11)380953@380
K=2

fF(J-LMNI559559380
XF(KCH(J)910)58,380,380
KC=2
IMF=IMF*lO+KCH(J9
J=J+l
IF(d-LMN159@59064
IF { KCH(J)-10 168 964 e63
GO TO(57r380)~KC
KC=KCH(J)-10
GO TO(380r380964r380964)eKC
FRCa I MF
GO TO(66965)rK
FRCr-FRC
XNX=XNX*lOa**FRC
1t152
K C = K C H (J) - 9
IF(J--LYN)291@291*67
GO T0(38079380)*JSW
1e=7
IEsIE+l
I E m I E + 1
IE=IE+29
GO 10171~70t70)@NN
N = I E
IE=O
CALL AJS (IDS(LC) ,IDL(LCI s o)
I E=N
RETURN
END

230

PROGRAM W R T
* L I S ? ALL
*ONE WORD INTEGERS

SUBROUTINE WRT
DIMENSION DATA(21
DIMENSION B F (2 4 0)
DIMENSION IBF(80)tICR(50)
COMMON K O O E ~ 2 3 8 0 ~ ~ 1 O A T ~ 9 0 r 2 ~ ~ I T ~ l O ~ r

EQUIVALENCE (KOP,IT(l)),lKOA,lT(21)
EQUIVALENCE (L A C B I D A T ~ S O ~ ~)) B (L T B I D A T (~ O B ~ ~ ~
EQUIVALENCE (K O D E (~) B D A T A I ~))
EQUIVALENCE (IBF(t)eBF(l))
CALL DATSW(O9JSW)
Jp5-2* JSW
CALL DATSW(lrIFC1
LD=?-KOP
IF(K0P-9)1000,40091000

1000 CALL DATSW(13eISW)
GO T O (121 ~4181 B ISW

418 IF(KOA~938~100t102
100 IF(LAC)930,930~101
101 LW90

1010 KOAtKODE(1)
102 LB~KOA/100

104 IF(KOA-386)106,105~105
105 LB*KOA+791

106 L B ~ ~ K O O E ~ I D + l ~ + 1 0 + 2 ~ K O A - 6 0 1 ~ ~ 2
107 LCml

GO TO 111
108 LB*ID+KODE(fD)+KOA-401

LPKODE(LB1
IF(LB)930~922tl09

~ ~ ~ ~ ~ ~ ~ ~ I ~ I D B I E I ~ F ~ ~ K O N , L N T B L ~ V ~ N C P ~ N V ~ ~ ~ X ~ I G T B N M ~ B N A P

GO TO 110

GO TO(938e93891040108)eLB

GO TO 107

109 I F ~ I D A T ~ L B ~ l ~) 9 3 0 ~ 9 2 2 ~ 1 1 0
110 LC=IDAT(LBt2)

LB=IDATILB91)
111 GO TO (12291121~1FC
112 N=240

1120 IF(L.C-N1113~114el14
1x3 N-LC
114 DO 117 M - ~ B N

1 F ~ D A T A (L B ~) 1 1 5 ~ 1 1 6 1 1 1 6

GO TO 117
115 B F ~ M) ~ D A T A (L B) ~ r 0 0 0 0 5

116 BF(M)=OATA(bB)+o00005
111 L ~ ~ ~ ~ 4 ~

M=O

M=M+t*L0+4
TflMmN)117291172,1171

1170 MM=M+%

2 31

1 1 8 2 CALL DATSW(13,ISW)
GO T 0 1 1 2 1 t 1 1 8 3) 9 1 S W

1 1 8 3 I ~ ~ M ~ N ~ 1 1 ? 0 ~ 1 2 O r 1 2 0

I F (L e) ~ ~ 1 ~ 1 ~ 1 ~ ~ 2 0 0
1200 GO T O 1 1 1 2 0 ~ 1 2 0 1) r t . D
1 2 0 1 CALL D A t S W (1 3 r I S W)

GO Y O (1 2 1 ~ 1 1 2 0) , 1 S W
122 N=2*b0+3

1 2 2 3 r F (t e ~ N l 1 2 2 4 0 1 2 2 5 r 1 2 2 5
1 2 2 4 N9LC
1 2 2 5 MrLB+N- l
1 2 2 6 W R K Y E (~ O ~ B S) (B A T A ~ K) ~ K = ~ ~ P M ~

905 FORMAP(1H ~ 7 E 1 5 . 6)
GO TO (1228,1229)rL.D
WRITE (2 ~ 9 0 5 1 (D A T A (K) P K = L B P M)

GO ? 0 1 1 2 1 t 1 2 2 7) , I S W

LB*M+ l
1 F t L C) 1 2 1 r 2 2 1 9 1 2 2 3

121 I F (I D = 1 1 9 3 0 9 1 2 4 r 1 2 5
124 I F (L - I) 9 3 0 , 1 2 6 , 1 2 5
125 I F ~ K O D E ~ 1 + 1) / 5 1 2 ~ 1 2 6 ~ 1 2 ~ ~ 1 2 6
1 2 6 RETURN
1 2 1 I=I+l

4 0 8 IF (KOA1955@955,401
4 0 1 CALL DATSW(13,K)

GO T O (4 1 1 0 ~ 4 0 1 0) ~ K

R E A D (S e I I 1) (I C R I K) ~ K * ~ P S O)
NsO
DO 410 K s l o K O A

L C = 1
M s K O D E (I) / 2 5 6
~ F ~ ~ ~ 5 0 } ~ 0 3 * 9 6 6 0 4 ~ 6

I B F (N) = I C R (M + l)

~ ~ K O ~ ~ ~ ~ ~ m 2 ~ 6 * M

1 2 2 9 CALL DATSW(13r ISW)

1227 LC=LC-N

GO ? 0 (1 2 1 r 1 0 1 0 1 ~ 1 S W

4010 1 1 = 5 0 1

4 8 3 N=N+1

484 L6=4

I F t M-90) 4 0 9 ~ 9 6 6 , 4 0 6

4061 FORMAT(1H 1
GO YO 408

232

RETURN
4110 IrI+KOA
411 REYURN

4071 XrI+KOA-K
RETURN

966 IE.11
955 IE=fE+lf
938 1E=tE+8
930 IE=IE+B
9 2 2 IE=fE+22

RETURN
EN0

23 3

PROGRAM LSG
*LIST ALL
*ONE WORD INTEGERS

SUBROUTINE LSG(KC3)
OIMENSION D A T A ~ ~ I ~ I O S ~ ~) ~ I D & ~ ~ ~ B I A R / ~)
c ~ ~ ~ O ~ K O D E (2 3 8 0) r I B A r (9 0 ~ 2 I r t f o ,

EQUSVALENCE (K O P , I T (~) I , ~ K O A B I ~ (~)) ~ (K P , I ~ (~))
EQUIVALENCE ~ L A C B I D A T ~ ~ ~ B ~ ~ ~ ~ ~ L T ~ I ~ A T O I
EQUIVALENCE (K O D E (~) B D A T A (~))
EQUIVALENCE (I A B K O D E (~ ~ ~ ~)) B ~ X ~ B K O D E ~ ~ ~ ~ ~))
EQUIVALENCE (I G B I A R ~ ~ ~) ~ (I H ~ I A R ~ ~ ~ ~ B ~ ~ C ~ I A R (~ ~ ~ ~ ~ ~ K ~ I A R (~ ~ ~
EQUIVALENCE I I D S ~ 1 ~ ~ I D A f ~ l ~ l ~ t e ~ I D L ~ l) , r D A T ~ l ~ Z ~ ~
EQUIVALENCE (N P V B K Q D E ~ ~))

~ ~ ~ J B L ~ I ~ ~ ~ ~ P I E ~ I F T ~ K O N ~ L N ~ , C P V B N C P B N V B I E X ~ I G ? B ~ M B B N A P

c 1 LOADPLOA /FREE TEMPORARY
c 2 S I N S COS E X P t SQRT, NEC
c 3 * B / r + t e t +
C 4 €58 Too L T B CTB EQe NE, LEI GE - INlflALCY
c STORE - AFTER OPERAND CLASSIFIED

STORE e I N I T I A L L Y
FREE TEMPORARY
KO= 1
ICmO
L f 9 l
GO t 0 (4 0 ~ 1 ~ 4 0 , 1 2 0 ~ 4 0 ~ 4 0 l ~ K P
IF(KOA)938@2r40
! F (b A C) 9 3 0 e 9 3 0 t 3
LD=90
LA- 1
GO tO 813

169 GO TO (f 6 8 r 1 6 9 e 9 3 0) ~ L L
166 GO fO(923~1680)~CA

1688 IG=LD
f HaLC

t=1+1
K ~ A ~ K O ~ E ~ 11
OCATE OPERAND

169 LL=LL+f

234

601 IF1LDl930,922,7

813 LBrfDS(L.0)
LC=%BL(bD)
IF(K0P-5611391610e13

CALL SHF190tLD)
IP(IE)459f611,45

7 IF(IDS(LD))930,922,813

1610 CALL A ~ S ~ ~ A ~ , L T , U)

3,611 RETURN
13 GO TO(lbl@16,50,16ll,KP

e MULTIPLE INSTRUCTION LOA0 OR STORE
161 eo TO (i ~ , i 6 2 ~ 1 6 2 ~ . ~
162 lF(LC-11930~1639923
163 IAR(bbsl l *DATA(LB)+r5

1631 GO P0(9389164e170),LL
1630 KP14

LCILD
6080 LDrLB

I F (I A R (L b + 1)) 9 2 3 * 1 6 3 b , 1 6 3 1

164 I f (I D = 1) 9 3 0 e l b 5 ~ 1 6 6
165 I F (L = I 9 9 3 0 t 1 7 0 ~ 1 6 6
166 1 ~ ~ K O O E I 1 + 1) / 5 1 2) 1 7 0 t l 6 f r l f 0
170 GO T01171,920,920t72t32Otb0851rKP

6085 GO TO 16086t6082)rLL
6082 LDSIG
6086 DO 6084 KsLBeLD

L C = K O D E (K j
I F (LC) 930,6084,6083

6083 CALL AJS(IDS(LC), IDL(LC)tO)
I F (I€) 4586084945

6084 CONtINUE
RETURN

171 GO TO (169172,172)*LL
172 LD=IG

173 GO fO(93091769174) 9LL
174 LC=%K-IC+f

IF (bC)930+923r16
175 LC=l

C LOAD

IFfIAR(Lb*l)=IH)l73rl73*923

160 GO f O (160le1602e%6Of) 9b4
1603 GO YO(b603e1602),LA

13 LBrLB+IC
ALL MOV t b ~ C * ~ B , L C ~

C

235

GO T O 16
58 N-LAC+LT-1

DO 5 9 K ~ ~ A ~ ~ ~
CALL MOV (Ks

60 M m 1
6 1 N=LAC+LT-1

6 4 DO 6 5 K z L A C r N

6 5 LB=bBaM

GO f O (6 4 e 6 6 s 6 8 r 7 0 ~ r L E

D A f A t K I r B A T A t K) * D A T A O

RETURN

D A T A (K) = O A T A (K) / D A ? A (L B)

RETURN
DO 6 9 KsLACeN
D A T A I K) P B A T A (K) + D A T A (L B)

RETURN

D A t A [K) - O A f A (K) - D A T A (L B)

RETURN

6 DO 6 9 K t b A C 9 N

6 3 LBSLB4M

69 bB=LB+M

90 DO 7 1 KmLACrN

7 1 LB*LB+M

e 4
718 I A - 8

16-0
CALL AJS (tAtfBeLT+LC)
f F (1 E) 4 5 s 9 1 1 @ 4 5

711 CALL MOV L I A r L A C r L T)
GO TO(714r713) *LA

711 LB-iOS(LD)
714 CALL MOV IXA+LTtLB,LC)

712 L A C r f A

CALL AJS (LACrLTtO)
IF1IE)45$712+45

C
~ ? ~ ~ ~ ~ 9 ? 3 ~ ~ L ~

t0* I G

236

833 IF(LD-l2)834,89r89
834 IF(LD14)835,87,84
835 IF(tDm2189987a87
84 I F (K O D E (I + l) ~ 5 1 2 * L D) 8 9 , 8 9 , 8 7
86 IF(LT=1)926~880~923
87 CALL SHF (90,LC)

REl'URN
C STORE BY SUBSCRIPT

88 IFIIK=IC)923~885~885

8800 IF(LTo1)927,8801~927
8801 CALL MOV (572+LAC,l)

885 IF(LT~IK+IC-118800~880~927

CALL AJS (LAC,LTtIK=IC+11
IF(IE)45,8802,45

DO 8803 K*LACgM
8802 M-LAC+LT-l

8803 CALL MOV (Ke57291)
880 f F (I D L (L C) - I A R ~ L L + 1 ~ - 1 ~ 8 8 1 ~ 9 0 ~ 9 0
881 IA-0

IB=O
CALL AJS(IAtIB*IAR(LL+l)+l)
If(IE145~882945

882 GO T0(883,884lrN
883 CALL MOV IIA*IDS(LC),IDL(LC))

CALL AJS (IDS(LC) ,IDL(tC)+O)
If(IE145r884t45

884 IDS(LC)=IA
fDL(LC)=IB
GO TO 90

CALL AJS (IDS(LC),IDL(LC)tLt)
IF(IE145r90e45

RETURN

89 ICrO

90 CALL MOV (IDS(LC)+ICeLAC,L?)

C GO TO* LTe CTr EQ, NE, LE# CE

IF(KOPo12~920~127~1201

IF(LT=1)925~1202a925

GO TO (1 2 1 r 1 2 2 ~ 1 2 3 ~ 1 2 4 ~ 1 2 5 r 1 2 6) , K O P

120 KOAtKOA-244

1201 KOP=KOP=12

1202 A m 1 0 0

121 ASIA
122 IF(A+DATA(LAC))128,128~129
123 IF (DATA(LAC1) 128,129,128
124 IF IOATA(LAC11 129gl28r129
125 A=-A
126 IF(A*DA?A(LAC)1129e129~128
127 CALL OATSW(144~)

GO TO (44r1270),K

K O m 3
REl'URN

44 NPV=O

1270 IF(KOA1127%,129,1271
1271 IGTtI

KO=2
128 I=I+KOA-l
129 REl'URN

c SINc COSe E X P e SQR?c NEC

237

140 KOPtl(OP"46
N=LAC+L?-1
GO TO ~ 1 4 1 0 1 4 3 r 1 4 5 r 1 4 7 # 1 4 9) r K O P

141 DO 1 4 2 KmLACvN
O A T A (K) = S I N ~ D A T A (t B))

142 LB=LB+1
RETURN

143 DO 144 K*LAC#N
DATA(KI=COS(DATA(LB))

144 LB=CB+l
RETURN

D A T A (K) = E X P (D A T A (L B))

RETURN

D A T A (K) = S Q R T (D A T A (L B l ~

RETURN

D A T A (K I = - D A f A (L B)

RETURN

1 4 5 DO 146 K=LAC#N

146 LB=LB+l

147 DO 1 4 8 KwLACrN

1 4 8 LB=L6+1

149 DO 130 KILACIN

150 L B q B + l

939 I E = l
9 3 8 IE=fE+7
9 3 1 I E = I E + l
9 3 0 IE=IE+2
9 2 8 IE=IE+l
9 2 7 IE=IE+l
9 2 6 I E = I E + l
925 I E = I E + 2
9 2 3 I E S I E + l
9 2 2 I E = I E + 2
920 I E = I E + 1 3
907 IE=IE+7

45 KO14
RETURN
EN 0

238

PROGRAM TRG
*LIST ALL
*ONE WORD INTEGERS

SUBROUTINE TRC
DIMENSION DAfA12),IDS(21rIDL(2)
DIMENSION IAR12)@AR(3)
COMMON K O D € ~ ~ ~ ~ ~ ~ B I D A T (~ Q ~ ~) B I T ~ ~ O) B

EQUIVALENCE ~KOP,IT(I))~(KOABIT(~))B(KPBIT(~))
EQUIVALENCE (L A C B I D A T (~ O B ~)) B ~ L T B I D A T (~ O ~ ~ ~ ~
EQUIVALENCE ~ K O D E ~ ~) ~ D A T A (~)) B (I A B K O D E (~ ~ ~ ~ ~ ~ B ~ I B B K O D € ~ ~ ~ ~ ~ ~
EQUIVALENCE ~ I D S ~ ~ ~ B ~ D A T ~ ~ B ~ ~ ~ ~ ~ I D L ~ ~ ~ B I O A T ~ ~ B ~ ~ ~
EQUIVALENCE ~ I G ~ I A R ~ ~ ~ ~ B ~ I H ~ I A R ~ ~ ~ ~ ~ ~ I C B I A R ~ ~ (I K , I A R ~ ~ ~ ~
EQUIVALENCE ~ J S ~ I T ~ P)) r ~ J N t I T (l O ~)
EQUIVALENCE (IAR12)rAR(l)) , (A B A R (~)) B (A B , A R ~ ~)) B (A C B A R (~ ~ }

~ I B J B L B I I B I D * I E * I F T B K O N B L ~ T ~ L P V B N C P B N V B I E X B I G T ~ N M ~ ~ ~ A P

C KP VALUES
C 1 ARRAY
C 2 FI IN *MAX B I NTB SUMF BLAST
C 3 L N ~ A R C Y A N * A B S B T A N H B S U M ~ M A G N I T U D E
C 4 SHIFT
c 5 **

Lhal
CALL DAYSW(3rfDD)

1000 IF(KOA)938@1,3
1 IF(LAC)930~930~2
2 LO390

LA+1

3 LA=KOA/100-2

4 GO TO (5 ~ 1 0 1 ~ L A
5 GO T O (6 ~ 6 ~ 6 ~ 5 0 1 ~ 6) BKP

501 GO f O (6 ~ 9 4 5) ~ L L
6 1F(KOA-386)8~7~7
7 M=KOA+791

GO TO 9
8 M=~ID+KODE~1D+1~+2+KOA-6011/2
9 LC=l

GO T 0 (9 3 8 , 1 2 ~ 1 2 , 9 3 8 ~ 9 3 8 j ~ K P

IF(LA1 938,93814

GO TO 13
10 LB=ID+KODE(ID)+KOA-401

LOmKODE(LB1
IF(LD1 930t922~11

11 IF(IDS(LD))9309922~12
12 M=IDS(tD)

13 GO T 0 ~ 2 0 0 ~ 2 9~130~1300~7O)rKP
LCPIDL(L0)

1300 GO f O (4 5 ~ 1 3 0 I ~ L L
138 CALL AJS (LACBLTBLC)

I f ~ I E) 9 0 0 ~ 1 3 1 ~ 9 0 0
131 GO T0(1310~1301),LA

1301 M=IDS(LD)
1310 KPaKP-2

GO TO(1311e51)oKP

N ~ ~ A ~ ~ ~ Y ~ ~
GO TO(b32c14~%6,18,281218),K

DO 133 K~~~~~~
DAfA(KltALOC(DATAIM)1
M=M+ 3,
RETURN

C LN

C ARCTAN
14 00 15 K s L A C g N

D A V A (#) ~ A T A N (D A V A [M) ~
1 5 M=M41

RETURN
C AB§

16 DO 17 K m L A C g N

17 M=M+1
D A T A (K) a A B § (D A T A (M))

RETURN
C TANH

18 DO 19 K r L A C e N

19 M=M+1
D A T A (K) = T A N H (D A T A (M 1)

RETURN
C SUM

20 C A L L MOV (L A C @ M # 1)
L L = C A C + l
M=M+l
DO 2 1 K = L L # N
D A T A (K) = D A T A (K - - l I + D A T A (M 1

2 1 M=M+1
RETURN

C M A G N I T U D E
210 DO 2 1 1 K = L A C # N

A t O . 4 3 4 2 9 4 5 + A L O G (O A T A O)
I F (A) 2 1 2 , 2 1 3 # 2 1 3

GO TO 214
2 1 2 L L - A - 1

213 L L B A
2 1 4 A a L L

2 1 1 M=M+1
D A T A (K) t l O o O + * A

RETURN
2 9 K t K O P - 2 8

GO T 0 1 3 0 # 3 1 ~ 3 6 r 3 8 # 3 6) r K
c M I N

38 A ~ ~ l e O
GO TO 32

C MAX
3 1 A s 1 0 0
32 C A L L MOV (5 7 2 , M + 1 1

NmM+LC-l
DO 34 K r M v N
I f ~ A + (D A f A ~ K ~ = O A T A ~ 5 7 2 9 ~) ~ 4 e ~ 4 # 3 ~

3 3 C A L L MOV (5 7 2 e K 9 1)
3 4 CONTINUE

C A L L A J S I L A C g L T e l)
IFI1E) 900 ,35 ,900

35 C A L L MOV (L A C t 5 7 2 g 1)
RETURN

e ~ ~ T E ~ V A L S P L A § V
36 C A L L A J S (L A C e L T 9 1)

37 D A T A (L A C) = L C - 1
I F (I E) 900 ,979900

RETURN
C SUMF

38 C A L L MOV (5 9 2 ~ M , 1)

2 40

IF(LC111930r41r39

bb=M+LC-1
DO 40 KINILL

39 NmM+1

40 D A f A (5 7 2) e D A T A 1 5 f 2) + D A f A o
41 CALL AJS (bAC,bTtl)

IF (I E) 900 942 9900
42 CALL MOV t L A C e 5 7 2 r l l

RETURN
C SHIFT

45 IF(LC11)930r46r965
46 IF(OATA(M1147r48,48
47 NMsDATAIMI-Oo5

48 NMaDATA(M)+Oo5
49 LLp2

GO T O 49

I = I + 1
KOP=KODEII)/SlZ
KOA=KODE(I)=512*KOP
GO 70 1509500l9 IDD

50 W R I T E (~ ~ ~ O ~) I ~ K O P I K O A
500 IF(KOP1930e3e943
901 FORMAT(3151
51 N = l

I F NM 152 r66 9 53
5 2 NM==NM

N m 2
53 IF(NM=LC)SSr66,54
54 NMsNM-LC

GO TO 53
55 If(NM1930~66r56
5 6 GO TO(57r58IeN
57 IFtNM-LC/2)60r59959
5 8 IF(NM-LC/2160160+59
59 NMeLC-NM

N13-N
60 I A e O

1810
CALL AJS L I A ~ I B I N M)
1F(IE)900r61@900

GO TO(62e64) ,N

LL=M+tC-NM-l
NmLAC+LT-1
DO 63 K o Z t L T
CALL MOV (NrLL91)
W N - a ,

CALL MOV ~ ~ A ~ 9 ~ A r N M ~
GO f O 65

CALL M3V ~ ~ A ~ r M + ~ M e ~ ~ m N M 9
CALL MOV (LAC+LT=NMrIAeNM9

RETURN

6 1 M=IDS(LDI

62 CALL MOV (IAeM+LC-NM@NMI

6 3 LL=LLmb

64 CALL MOV (I A r ~ ~ N M ~

6 5 CALL AJS (I A i f B r O)

66 CALL MOV ~ ~ A ~ r ~ r ~ ~ ~

241

C ARRAY
200 I F t L C - 1 1 9 2 4 9 2 0 1 0 9 2 4
201 IAR(2+LL-1) KODE12*M-19

I A R 1 2 + L L) P K O D E I 2 * M)
GO T 0 (2 0 2 * 2 0 2 e 2 0 5) e L L

1=1+1
K O P = K B D E (1) / 5 1 2
K O A * K O D E (I) - - 5 1 2 * K O P
GO T O (2 0 3 r 2 0 4 1 , I D D

283 WRgTE(3,901)1,KOP,KOA
204 I F (K O P 1 9 2 4 e 2 0 4 0 e 9 2 4

205 fF(AC192492050,2050

202 tL@LL+f

2040 I F ~ K O O E (f ~ m K O D E (I - 1) ~ ~ ~ 2 0 1 ~ 3

2 0 5 0 &6=AC+le5
C A L L A J S (LACeLT,LC1
I F (f E 1 9 0 0 e 2 0 6 ~ 9 0 0

A R = O o O
N=LAC+LT-1
DO 207 K=LAC,N
D A T A (K) = A B + A C + A

2 0 4 AB*AB+l.O
RETURN

206 A C t l A R - A) / I L T - l)

c Jc+
70 LB=M

Mm 0
I F (L T = = L C ~ 7 5 r 7 4 * 7 5

74 I F (L C m 1 1 9 2 6 r 8 1 , 8 0
75 I F (L C - l) 9 2 6 + 8 1 e76
76 f F (L T - 1 1 9 2 7 9 7 7 , 9 2 7
77 C A L L M O V (5 7 2 r L A C g l)

C A L L AJS(LACILT ,LC)
I F (I E) 9 0 0 ~ 7 8 1 ~ 9 0 0

781 GO T 0 (7 8 , 7 8 2) , L A
782 L B = I D S (L D)
78 N = L A C + L T - l

BO 79 K s L A C 9 N
99 C A L L M O V (K t 5 7 2 9 1)
80 M = l
8 1 N = L A C + L T - 1

DO 8 3 KeLAC,N
I F (D A T A (K 1) 6 2 0 , 6 2 5 , 6 2 5

6 2 0 t F { D A T A (L B)) 6 2 1 , 6 2 2 , 6 2 2
621 IAsDAfA(LBlme5

GO TO 6 2 3
6 2 2 I A ~ D A f A (L B) * r S
6 2 3 IF(IA-DA?AILB))625t62496~5
624 D A ? A I K) = D A T A t K) * + f A

625 D A T A (K) r D
8 3 LBnLBaM

RETURN
9 6 5 1E120

GO T O 8 3

2 42

9 2 1 1E=1E+1
9 2 6 I E = f E + 2
924 I E l l l E 9 2
9 2 2 I E m I E + i !
920 I E = I E + 2 0
900 RETURN

END

2 43

PROGRAM TAB
+LIST ALL
*ONE WORD INTEGERS

SUBROUTINE TAB
DIMENSION DATA421
DIMENSION IBF(105)
DIMENSION IBS(2)eID&(4)
DIMENSION f ~ N ~ 2 9 ~ r I Z ~ l l ~ ~ I C R ~ 1 f) , r C 8 (2)
COMMON K O O E ~ 2 3 8 0 ~ ~ I D A T ~ 9 0 ~ 2) c r f (l O) c

IVL48) IVSI81

~ I ~ J ~ L ~ I I ~ ~ D P I E , ~ F T ~ K O N , L N T , L P V ~ ~ C ~ ~ N V ~ I E X ~ I G T ~ N M B ~ N A P
EQUIVALENCE ~ K O P ~ I T ~ l t ~ r ~ K O A ~ I T ~ ~ ~ ~ ~ ~ I R N O r I Z ~ l ~ ~
EQUIVALENCE (IV,IVL(1)1
EQUSVALENCE ~ L A C ~ I D A T I 9 0 ~ 1)) ~ ~ L T ~ I D A 1 ~ 9 0 ~ 2 ~)
EQUIVALENCE (KODE(E),DATA(l))
EQUIVALENCE (ICARD@KODE(1))
EQUIVALENCE I I D S ~ 1 ~ ~ I D A T ~ 1 ~ 1 1 ~ e ~ I D L ~ l ~ r i D A f o)
EQUIVALENCE ~ I R N (l S) ~ I C R (1) 1 ~ (I R N ~ l 7 ~ ~ ~ C B (l)) r (X N X ~ D A T A (5 1 2 ~ ~ ~

CALL DATSW113#ISW)
GO TO(1219418)tISW

418 CALL DATSW[O@JSWI
ds5-2*JSW
CALL DATSW(1tIFC)
LM= 1
I I P O
LMX=6+IFC

X(IBboIRN(29) I

1000 IF~KOA)938,100~102
100 IF(LAC)930,930~101
101 L B t 9 0

GO TO 110
1162 IF~tM~930@1183r1100
1183 WRITE(J91184I
1184 FORMAT(1H 1
1100 LM*LM+l
1010 KOA*KOOE(I)
102 LBaKOA/100

104 1F(KOA-386~106~105~105
105 fVS1LMl=KOA+791

GO TO 107
106 IVS~LM)~lKODE(ID+11*1D4E~K~A~601)/2
107 IVL(LM)=l

60 TO 111
108 L8~ID+KOOE~ID~+KOA=401

LB+KODE 6 LB)
IF(b8)930r922~109

109 IF(IDS(LB))930,922,110
110 XVL(LY)=IDL(LB)

t V S (LMI IDS(LB 9
111 IF(LM-LMX)121~301,930
121 IF(SD=11930~124t125
124 IF(L-I)938e2280@125
125 I F (K O D E ~ I + 1) / 5 1 2 ~ 1 2 8 0 ~ 1 ~ 1 ~ l 2 8 8

1 2 4 I = I + 1

126 IF(LM)908e980@301
301 %F(1%)3§9302@35
302 IRN(l)=L

GO f0(938,938g304,108)rtB

1280 60 f 0 1 9 0 0 9 1 2 6) r I S W

GO ~ O (1 2 1 ~ ~ ~ 8 2 ~ ~ S S W

RN 21 =LO
RN(3) a18

2 44

IRN(4)=1000
DO 303 M15916

IRN(6 f +19264
IRN(13)==15040
IRN(14)=16448
IRN(17)=16448
IRN(18)=24640
XRNl19)-4032
IRN(20)-3776
IRNf21)=-3520
IRN(22)~-3264
I RN I23 1 1-3008
IRN124)*-2752
IRN(25)t-2496
IRNf269=-2240
I R N (27)p=1984
IRN(28!=-1728
IRN(29Ir16448
I I l l

35 INR=IV
IF(LM-1)930*39,36

36 DO 38 Kx2tl.M
1 F l I V t (K) ~ I N R ~ 3 8 ~ 3 8 ~ 3 7

37 INR=IVL(KI
38 CONTINUE
39 DO 328 KPl+INR

40 IBF(MI=IBL
DO 40 Ft=lelOS

IST=-lO-IFC
DO 327 MNS1,LM
IST.IST+17-2*IFC
IF(K-IVL(MNf)41941,327

NrIST+6*1FC-6
MM* 1
00 3021 MmN$NN
18F f M 1 It IMM)

NS= 1
CALL MOV (572,1VS(MN)+K’191)
IF1XNX)P04+327e305

304 XNX=-XNX
NS=2

385 GO TO(3051~3050)rIFC
3050 XNX=XNX*.OOOOS
3051 DC=Oe4342945*ALOG(XNX)

41 NN=IST+ll

3021 fMPMM4-1

LL-OG
1S.l
IF(DC)3052,3053,3053

305% IS12
3053 GO TO(3060e3074)rIFC
3060 M=fSf+i!

~ ~ ~ (~ S T ~ l ~ ~ ~ ~ ~ (N S ~

0 6 3 e 3 0 6 4 1 ~ 1 5

GO TO 306
2 45

3064 IF (L L) 3101~3102e3101
3101 IBf(ISf*9)*24640
3102 NP=eLL
3065 MM8NP

IF(MM-%0)306
3067 NL=MM/10

IBF(ISf+10)*NL
MM=MM-lO+NL

3068 IRF(IST+ll)=MM
GO lO(306993073~319819N

LtfLL-4
3070 X N X ~ X N X / 1 0 0 0 0 e

3069 IF(tL-3)310~310~3070
3072 XNX~XNX*lOOOO4

3073 IF(LL+313012~315~315
3074 IF(tL+NS18)309,3249324

GO T0(308,314),IS

GO TO 3069

GO TO 3170

IBF(IST*5)~1CB(NS)
IF(LL+4)327~327e314

IG=lRN(Lt+4)

LL%LL+4

307 Mo IST+6-Lb

308 !BFLM-l)=ICB(NS)

318 IC=IRN(LL+l)

314 M=M+2

315 XNX~XNX*lOOOOe

3170 NM=f
318 IOPsXNX

XNX*XNXa I DP
IFFeIG
NNn8192

DO 3183 N t l 9 1 4
fF(IDP-NN)3182,318493164

DGm,00197601

3182 DCoDC/2r
3183 NNmNN/2

3184 XNXsXNX+DG
319 NN=IDP/IFF

ISKrO
IF(NN-l0)3199~319Oe3190

KNKJM
IF(IFF~IG)3002~300Oe324

GO T O 319

3190 ISK=10

3000 GO TO(3001e3002)~NM
3001 KNKSKbJK-1

3008 IBFtKNKloO
3002 KNKs#NKel

3003 GO T O (3012930041rIFC
3004 K N K - K N K - 1
3005 fF~(18F~KNK~49)/9-1~3001e3006~3007
3001 fF(IBF(KNK)-9)3009,300~,~009
3009 GO T O (32493010)tIFC
3010 I F (K N K - f S T s N S + ~) 3 2 4 ~ 3 0 ~ ~ 9 ~ 0 1 ~

60 TO (3012r3010)eIFC

IF(KNK-ISV-6+1FC95)3885,388393085

246

3011 IBF(KNK-l)*iBf(KNK)
1BF (KNK 1 = 1
GO TO 3199

3012 KNK=KNK+l
1BF KNK t = 1
N*5
NPmNP+l
GO TO 3065

IF(M-IST-l213199,327r327
3198 M*M+1

3006 IBF(KNKl*JBF(KNK1+1
3199 IBf(M)=NM-fSK

fDP=IDP=NN*fFF
IFF=IFF/lO

GO TO(3200e32011efFC
320 M=M+1

3200 IF1M=ISf-8)322e327t930
3201 IFIM-fSt-7/322~320,321
321 IF(M-IST-l2)322,327,930
322 lF(IFF1930e323e319
323 XNXoXNX*l0000a

NM= 2
I G ~ l O O O
GO TO 318

DO 325 MIISTON
325 XBFIM)=23616
327 CONTINUE

N= IST+11
00 3270 M S l e N
IF(~ I B F ~ M) + 1 0) / 1 0 - 1) 3 2 7 0 ~ 3 2 7 1 ~ 3 2 7 0

IRF(M)=ICRINN)

WRITE(J*329)(IBF(M)*M%l*~~
329 FORMAT (1H e 105Al)

CALL DATSW(13~ISWl
GO T0(3300328)*ISW

324 NsfST+ll

3271 NN*IBF(Mj+l

3270 CONTINUE

328 CONTINUE
330 LM+O

9 3 8 I E * 8
930 IE=IE48
922 IE=IE+22
900 RETURN

END

GO TO 121

2 47

PROGRAM LST
* L I S T ALL
*ONE WORD INTEGERS

SUBROUTINE L S I
DIMENSKON DATA421
DIMENSION I B U F (9 0) v I C R (S O) V I C P ~ (~ ~ B ~ ~ V L O O K O
COMMON K O D E (~ ~ ~ O) , I D A T (~ O V ~ I ~ I T (~ O) V

EQUIVALENCE ~ K ~ V K O D E ~ ~ ~ ~ V ~ ~ ~ ~ K ~ D E (~)) O K ~ , K O D E ~ ~ ~ ~
E Q U I V A L E N C E ~ I R L V ~ C R (~ ~ ~ ~ ~ (I Q O I T (~ O)) o (I P v I T (~))
EQUIVALENCE I I C P T (l e l) , K O D E (l))
EQUIVALENCE (Y O D E (2) t D A T A I l))
EQUIVALENCE (NP,KODE(4) 1
GO T 0 (3 + 3 r l) r I E X

~ I ~ ~ ~ L ~ I I ~ I D ~ I E ~ I F T ~ K O N , L N T B ~ P V ~ N C P ~ N V ~ I E X V I G T V N M ~ ~ N A P

1 WRITE I1 9 2 1
2 FORMAf (41H ** L I S T CANNOT BE USED WHILE E D I T I N G **I

GO TO 5 0 1
3 C A L L DATSW113,ISW)

GO T O (5 0 l t 3 1 1 ~ 1 S W
3 1 I I S v = I f

I M = I I - I P
1 1 x 4 5 9 1
W R I T E (~ ' ~ ~ ~ ~ K O D E ~ M ~ V M ~ ~ , ~ ~ ~ ~) , (~ ~ ~ N ~ , N ~ ~ V ~ ~ ~
CALL DATSW(~ZIKKQI
CALL DATSW 0 sK I
KQ=5-2+K
IF(IQ)300r400969

R E A D (3 ' J I) (K O D E (K) , K n T t I Q)
I = Z * K O D E (l) + l
WRITE(KQ982)

I X = l
1 I n 5 0 1
READ(5'11)(1CR(K)tKt1~50)

GO T O (8 6 ~ 1 0 1 1 , I X

K l s K O D E (I) I 2 5 6
K 2 = K O O E (1) - 2 5 6 * K l
I F (K 1 - 5 0) 1 0 0 ~ 1 0 5 ~ 1 0 6

I B U F (d) = I C R (K 1 + 1)
I F (K 2 - 5 0) 1 0 1 r 1 0 5 r 1 0 5

I R U F (J) = S C R (K 2 + 1)
I F (I ~ ~ Q) 8 6 ~ 1 1 0 e 1 1 0

GO TO 110

69 I I r I I S V

8 2 FORMAT(1H 1

8 3 J=O

8 6 f = I + l

100 J=d+ l

101 J=J+1

1 0 5 I X = l

106 I X = 2
110 W R I T E (K Q e l l l) l I B U F (K) V K ~ l , ~ ~
111 F O R M A f (R X 9 8 0 A l)

808 W R I T E (2 , 8 0 1) (8 B U F (K) 6 K ' l o J)
801 FORMAf (80Ab)
119 CALL DAYSW(13eISW)

1'10 I F (t m I Q) 8 3 ~ 2 0 0 9 2 0 0

GO f O (8 0 0 t 1 1 7) @ K K Q

GO TO(502911701 , ISW

2 48

711

700
701

902

7 04
703

70 5
708

-714

701
710
70 9
715

713
716

719

90 1
318
712
300

38 1
302

303

304

I I=IP
R E A D (3 ' 1 1 T) I K O D E (K) , K ~ l , I M)
DO 701 K-197
WRITE(3,700)KODE(K)
FORMAT(6XoI61
CONT I NU€
CALL DATSW(13,ISW)
GO TO(5009702) t I S W
DO 703 KS8,Kl
KOP=KOOE(K)/512
KOA+KODEIK)-KOP*522
WRITE(3,704)KOP,KOA
FORMAll216)
CONT I NUE
MnK141
CALL BAtSWf13rISW)
GO T0(500,705)tISW
DO 708 K=IM,KZ
WRITE(3r700)KQOE(K)
IFIK3-K2)715t715r714
N = (K 2 + 2) / 2
KQ=K3/2
CALL DATSW(13,ISWI
GO lO(500~707) 91SW
00 710 MtNtKQ
WR I f € (3 * 709 1 DATA t M 1
FORMAt(F12r41
NN=(fM=K3)/4
CALL DATSW(13tISW)
GO T0(500+713) oISW
IF(NN)712,712,716
KaK3
DO 718 NEleNN
Ll=l
DO 719 L p 1 ~ 3
UQPK+L
M~KODE(KQ)/256
J=KODEIKQ)-256+M
LOOK(Ll~~ICR(M+1)
LOOK~Ll+l)=ICR~J+1)
Ll=L1+2
WRITE13+901) (LOOK(KQ),KQ*l961
FORMAT (6X r 6 A l)
K=K+4
GO TO 500
CALL DATSW(2,KX)
IF (NCP) 301,301,303
WR It€ t KQ,302
FORMAT(3OH THERE A R E NO PROGRAMS DEFtNED)
GO TO 500
1114
READ(3'II)[(PCPT(J,K),K11,6)~~~~,N~P)
I[f=50%

)(ICf?(K!9K'=1950)
WRlfE(KQ982)
GO T01305930419KX
Mr NCP43 1 /4
IPa4

249

3 8 5

3 0 6

3 0 9

30 8
309
3 1 0
3 1 1
3 1 2

3 1 3
3 1 4
3 1 5

3 1 6
5 0 2
5 0 0

5 0 1

40 0

401

402

4 0 3

4 0 4

GO TO 306
M=HCP
IP=l
DO 33.6 N Z I P M
t l = O
DO 309 N N = l , f P
MM.N+(NN-l)*M
f F (M M = N C P) 3 0 7 , 3 O f r 3 1 0
DO 308 L n l r 3
Ll .L1+2
J - I C P T (M M s L) / 2 5 6
K ~ I C P T (M M , L) = 2 5 6 + J
L O O K (L l - l) = I C R (J + l I
LOOK(Lll=ICR(K+l)
CONT I NU€
GO ? 0 (3 1 1 * 3 1 3) 9 K X
W R I T E (K Q * 3 1 2) (L O O K ~ K) ~ K ~ l ~ 6 ~ ~ ~ I C P ~ (M M ~ ~) e ~ ~ 4 ~ 6 ~
FORMAT(9X,bA1,318)
GO TO 3 1 5
W R I T E (K Q ~ 3 1 4) (L O O K (K ~ ~ K = l ~ L l)
F O R M A T (9 X ~ 6 A l ~ l O X ~ 6 A l ~ l O X ~ 6 A 1 , l O X , 6 A l ~
CALL OATSW(13,ISW)
GO T 0 (5 0 2 ~ 3 1 6) , I S W
CONTINUE
W R I T E (K Q , 8 2)
I I r 4 5 9 1
R E A D l l ' I I) (K O D E 1 M l r M ~ l ~ l l 4 O ~ ~ ~ I T ~ N ~ ~ N = l ~ 2 6 ~
1e=4
RETURN
I f ~ ~ I P - 1) + 2 + 2 1 0 0
R E A D (S ' 1 1) I S T T ~ N C H
I F (N C H) 5 0 0 , 5 0 0 , 4 0 1
I l=lSTf
R E A D (S ~ I I I (K O D E (K) t K ~ l ~ N C H)
M- 1
K= 1
W R I t E (K Q e 8 2)
DO 4 0 3 NPlBNCH
l F ~ K O D E ~ N ~ ~ 2 3 3 8 7 1 4 0 3 ~ 4 0 2 ~ 4 0 3
KaN-1
W R I ~ E (K Q P ~ O ~) ~ K O D E (J) ~ ~ ~ M , K)
M=N+l
CALL D A T S W (1 3 t I S W)
GO T 8 (5 0 2 , 4 0 3) ,ISW
CONT I NUE
W R I f E (K Q , 4 0 4) (K O D E (J) , J = M , N C ~ ~
fORMAl ' /8X ,40A2)
GO TO 5 0 2
END

250

SUBPROGRAM KY BRD

E N 1 KYBRQ

LOX If KYQRB
S T X 2 A R G + I
MDX 2 1

ARC LO L 0
LIRF TYPAM

R T R N BSC L 0
END

KYBRQ BSS 1

S f x 2 R T R N + 1

25 1

SUBPROGRAM TYPAM

L I B R
ENT

SAV12 BSS
S I X DC
COURT BSS
C10 DC
C 5 1 DC
TYBLK DC
NEWL2 LO

S TO
B S I
MDX
STX
LOX

STO
MDX
BSI
MDX
MDX
MDX

S
STO
MDX
MDX
MDX

TYPAM MDX

LOOP1 LO

CKDEL L O

TYPAM
1
6
1
10
5 1
/2100
C 5 1

1 0
CKBF

1 -1
1 LBFAO
2 6

c10
1 0
1 -1

2 -1
CKBF

LOOP1
I N T L Z
BFCHC
LCHCT
BFCHC

L D E L I N * = l
INTLl
I N f L 2
*+ 2

BOSC I 0
STO 6 FA DO
L O L / Q O O C
STO SAV 1 2
L D IOCC2
STO b / O O O C

I N T L 1 L D BFADO
STO LBFAD
L D S I X
STO BFCHC

STQ LCHCT

S f O D E L I N
LO LCHCT
A S I X
STO COUNT
LO LBFAO
STO b 1
LDX 2 2
LD TWO
S L / 7 5 € 9
BSC +
L D X 2 1
LO S E L C f
B S I 5 TO
MDX 2 -1
MDX LOOP
L O X 2 8

BS I STO

INTLZ L D ZERO

REWT LB ZERO

E D I T bD T Y B L K

2 5 2

RETURN
BUFFER ADDRESS

BUFo CHAR. COUNT

L I N E CHAR. COUNT

%/SB INDICATOR
LINE. CHAR. COUNT

MDX 2 -1
MDX E D I T

LOOP LO 1 0
S T O L 2
BS 1 GETTY
MDX L COUN?,-1
MDX LOOP
MDX READ

MDX L BFCHCe1
L D BFCHC
S C297
BSC I CKBFn+
MDX RESE?

CKBF DC 0

LBFAD DC 0
RFCHC DC 0
C50 DC 50
EOLS DC 0
C 2 9 f DC 2 9 7
BFADO DC 0
TWO DC 2
INTRP DC 0

X I 0 SENSE
BOSC I S T 0 0 4 2
X I 0 IQCC
L D 1 0
SLA 12

SLA 1
BOSC L CHAR2n-2

aosc L CHAR,-+

RESET STO EOLS
C K L I N LD D E L I N

BOSC L CKOEL#Z=
BOSC L REWTBZ
L O EOLS
BOSC L NEWLZ,Z+
BOSC 1 EOS,+

STO 1 0
L D BFCHC
A ONE

SAVE STO L / 7 5 F 4
L D SAV12
STO L /oooc
MDX TYPAM+l

EOS MDX L BFCHC,l
LDX 2 45
STX I2 1
BSI GETTY
MDX EOF
BSS E 0

IOCC DC 0
DC / O A 0 8

SELCf DC /81OQ
DC /oc00

EQCC2 DC ENTRP
DC I 0 9 0 0

SENSE DC 0
DC /OF01

EOF LO C 5 0

L I N E BUFFER ADDRESS
BUFFER CHAR6 COUNT

E O L / E O S

BUFFER ADDRESS

INTERRUPT ROUTINE

READ CHARACTER

DATA CHARACTER
CHECK FOR CARRo RETURN

BRANCH I F CRe

253

L C H C T DC
ZERO DC
ONE DC
MONE D C
O E L I N D C
S T O BSS

S TO
BSI
X I 0

RDWRT W A I T
MDX

CHAR L O X
C H A R l L D

EOR
0 sc
MDX
M OX

CHAR2 L D X
MATCH MDX

MDX
S T X
R S I

S
BSC
S
B S C

UP01 MDX
BSI
LD
S
BSC

READ S T X
R S I
X I 0
MDX

G E T T Y BSS
MDX
L O
S R T
s TO
LD
S L T
RSC
LD
S R A
MDX

S E C L D
S R T
LD
SLT

SAME SbA
BSf
BSC

EOR
BSC
LD
A

T Y P E 1 L O

DEL LD

L I N E CHAR. COUNT 0
0
1
-1
0 s/ss
1
l N T R P
TNRDY
10cc2

+-2

L2 H O L T B

L MATCH,+-

C H A R l

2 5 1

1 0

2 -1

2 11
2 -1 *

I 2 1

1 1
G E T T Y

C 4 8
L DELm+-

TWO
L B K S P t * -
L L C H C T t 1

C K B F
L C H C T
c74

t NENL2t-
1 I O C C

T N R D Y
S E L C T
RDWRT
1

1 -1
L 2

1
L 2

ZERO
1

L S E C t Z
L t T Y P T B

8
SAME

L 2 T Y P T B
8
Z E R O
8
8
S T O

I G E T T Y
1 2

z
MONE
TWO

c4a

2 5 4

STO
MDX

BSC
S
STO
MOX
LO
S
BSC
STO
MOX
MDX
L D
EOR
BSC
L D
S
BSC
S
STO
MDX

BKSP L D

C 4 8 DC
C t 4 DC
TNRDY DC

X I 0
SLA
BSC
WAIT
MDX

TYPTB DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
Be
DC
DC
DC
DC
DC
D e
D e
DC
D e

DC
DC

HOLTB EQU

D E L I N
UP01
D E L I N

ONE
O E L l N

LCHCT
ONE

L READ,+Z
LCHCT

L BFCHCI-~

+-

1 1

1 1
1 0

C48
READgZ
D E L I N
ONE

ONE
D E L I N
READ
4 8
74

SENSE
5
TNRDY 9-

+-

-

TNRDY+1
/C4FC
/DBDC
/FOF4
/DOD4
/E4EO
/213C
/281C
13034
11014
/2420
/ 7 C 5 8
/ 5 c 7 0
17450
/5464
1 6 0 9 8
/ 9 C BO
/B490
/ 9 4 A 4
/AOD6
/BCDA
/ 0 4 4 4
/CZFE
IF600
18002
/ 4 0 E 6
/coo0
-1
/2000
/100Q

O B 1
2,3
4 9 5
697
8 9 9
BLANK9A
8 #C
D # E
F *G
H 9 I
J B K
L ,M
N 90
P ,Q
R 9 s
T t U
v 9 w
x 9 Y
2 9 *
/ 9 4 - *G
=, f
1 9 @

r tSEMICOLON
8 9 '

0
1

25 5

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
oc
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
oc
DC
DC
DC
DC
DC
oc
DC
DC
DC
DC
oc
DC
DC
DC
06
END

1080
10400
10200
IO100
/0080
10040
10020
10010
0
19000
18800
/a400
18200
/8100
/8080
18040
1 8 0 2 0
I8010
15000
14800
14400
14200
14100
14080
14040
I4020
14010
12800
12400
12200
/2100
120 80
12040
/2020
12010
14220
13000
180AO
14000
/8000
1 O O A O
18120
14120
18420
I2420
140AO
14420
/o 120
10420

A
B
C
D
E
F
C
H
I
J
K
L
M
N
0
P
Q
R
S
f
U
v
W
X
Y
z
1
Y

+
.I

G

I
)

L:

0

*
SEMICOLON
s
4

256

SUBPROGRAM SERCH

ENT SERCH
SERCH DC 0

L O X I2 SERCH
LD 2 0
STO T A W 1
LB 2 1
STO COL+1
LO 2 2
ST'O L I M + l
MDX 2 3
STX 2 RTN+1
LO ZRO
S t O L L

NOM L O ZRO
S L L
STO L 2
LOX 1 3

L P O l MOX L L e 1
L I M LO L 0

A O N E
S L L
BSC L LPO2,Z
STO L L
MDX RTN

LP02 LO L 1 LOOK
TAB €OR L2 0

BSC L NOMpZ
LD L 2

COL s L O
STO L 2
MOX 1 -1
MDX t P 0 2

RTN BSC L 0
L EQU /75F3
LOOK EQU /7D1C
ZRO DC 0
ONE D C 1

END

257

SUBPROGRAM AJS
* L I S ? ALL
+ONE WORD INTEGERS

SUBROUTINE AJS (L A B L T O ~ L T N)
COMVON K O D E ~ 2 3 8 0) , 1 D A T (9 0 ~ 2) 9 ~ T ~ l 0 ~ e

E Q U I V A L E N C E ~ J S ~ 1 T ~ 9 t ~ , O ~
IF (LA 1930 e 3 $ 1

JN=LfO
CALL FRE
t F t I E 900 ~3 ,900

LTO-0
IF (L T N 1 9 3 0 ~ 9 0 0 9 3 0

CALL GET
I F (J S) 900 r900e5

JNsLTO-LTN
CALL FRE
I F (I E) 9 0 0 t 4 0 ~ 9 0 0

~ I ~ J ~ L ~ I I ~ ~ D ~ I E ~ I F ~ B K ~ N ~ ~ N ? ~ L ~ V ~ N C P , N V I I ~ X ~ I ~ ~ ~ N M B B N A P

1 IF (LTO-L?N) 2990094
2 JSaLA

3 LA=O

30 JN=LTN

4 JSiLA+LTN

40 f F (L T N) 9 3 0 , 4 1 # 6
4 1 L A S O

t.TO=O
RETURN

5 L A - (J S * l) / 2
6 LTOsLTN

900 RETURN

RETURN
END

930 IE=30

258

SUBPROGRAM GET
*LIST ALL
*ONE WORO INTEGERS

SUBROUTINE GET
OIMENSION I S P (2)
DIMENSION IPP(21
COMMON K O O E ~ 2 3 8 0) ~ 1 D A T 1 9 0 ~ 2) , f T o ,

EQUIVALENCE (JS91T(9))+(JNiIT(lOI)
EQUIVALENCE ~ISP(l)tKOCE(2)),(IPP(1),KODE(l))
EQUfVALENCE(IPPX*1PP(l14l)t
IF IJN) 926992691

~ I ~ ~ ~ L ~ I ~ ~ I D ~ I E ~ I F T ~ K O N ~ ~ N T , L P V ~ N C P ~ N V ~ I E X ~ ~ ~ ? S ~ M ~ ~ N A P

1 IF(LNT-JN)929#102+102

IF (I P P X I 9 3 5 9 9 2 9 9 2
102 K = 1

2 JSp1141
3 M=JS

JS= I PP(M)
IF (J S) 9359895

5 IF(ISP[M)-JN)3,7,6
6 ISPIMI=ISP(M)-JN

IPP(M)=Z*JN+JS
M= IPPI M 1

7 IPP(M)=IPP(JS)
ISP(M)=ISP(JS)
LNTrLNT-JN
RETURN

8 GO TO (99150929j9K
9 JS81141
10 MsJS

11 NPIPP(3.s)

12 IF fN=JS=2+ISP(M) 1 935,19910
13 ISP(MlrISP(M)+ISP(J~)

JSmIPP(JSI

IF (N) 935,14912

fPPlJS)=IPP(N)
ISP(JS)ffBP(NI
Ka2
GO TO 11

14 GO TO (1 5 r 2) t K
15 CALL GARB

K=3
fF(JS)9009900t2

935 IE16
929 IE=IE+3
926 IEmIE+26

JS=-1
900 RETURN

END

2 5 9

SUBPROGRAM GARB

I DS
LNT
I DL
1 SPX
I P P X
1 T 9
I E
I FT
I S P
I PP
I DSP
I DLP
TEMP
c 5 7 3
N
M
ONE
ZRO
KK
GARB

b 1 5 0

L 1 5 1

LO16

LO17

LO20
LO21

ENT GARB
EQU / 7684
EQU /75EB
EQ U /765A
EQU /700A
EQU 1 7 8 8 8
EQU / 7 5 F 7
EQU /75FO
EQU /75EF
EQU /7FFE
EQU /7FFF
DC I D S
DC I DL
BSS 1
DC 5 7 3
BSS 1
BSS 1
DC 1
DC 0
RSS 1
ass 1
L D L I F T
A ONE
STO KK
CALL SHF
DC KK
DC c 90
LO c 5 7 3
STO M
LO ZRO
STO N
S K K
STO L 1
LD L 1 IDS
BSC L L 9 3 0 , i Z
BSC L L 1 5 1 9 2
MDX L N,1
MDX 1 1
MDX L 1 5 0
L O 2RO
STO TEMP
S KK
STO L 1
L O L 1 I D S
BSC L L0219+-
BSC L L 9 3 0 @ 4
s M
BSC L L 0 2 1 9 + Z
BSC L L023,+
LD TEMP
BSC L 4.020,-
STO L 2
L O L2 IDS
s L1 IDS
BSC b L 0 2 1 9 Z +
BSC L L930,+
STX 1 TEMP
MDX 1 1
MDX LO17
LD TEMP

260

BSC L L930t-
A I DSP
STO ARC 1
LO IDLP
A TEMP
STO A R C 2
C A L L MOV
oc M

A R C 1 DC 0
A R C 2 DC 0

LO TEMP
STO L 1
LD M
STO L l XOS

LO23 LD M
A L 1 XDL
STO M
LD N
A ONE
STO N
S KK
BSC L LOlbe+Z
BSC L L9309Z
LD M
SLA 1
S ONE
STO L I T 9
STO L IPPX
LD C1177
S M
STO L ISPX
S L LNT
BSC L L949eZ
LD ONE
S L I T 9
STO L 1
LD ZRO
STO l.1 I P P
STO L 1 I S P
CALL SHF
DC c90
DC KK

RTN BSC I GARB
L949 MDX L 1 E t 1 9
L 9 3 0 MDX L I E e 3 0

LO MONE
STO L I T 9
MDX RTN

MONE DC -1
C90 DC 90
c 1 1 7 7 DC 1177

END

26 1

SUBPROGRAM F R E
EN f FRE

FRE BSS 1
LO L N
s c 5 9 2
6SC L L916e4

S Cb05
BSC L L916e-Z

LO02 LO L N
SL A 1
s ONE
ST0 JA
LD ONE
5 JA
STO L 2
LD C1141
STO KK

S K K
STO L 1
LO L 1 1PP
STO K K
BSC L L915*+2
BSC L L012,+

BSC L L009eZ+
BSC L L916e+

STO L2 I P P
LO L 1 1SP
STO L2 I S P
LD JA
STO L 1 1PP
LO L K
STO t l I S P
L O L LNT
A L K
STO L LNT

RTN BSC I FRE
L916 MDX L I E e 1
L915 MDX I I E e 3 5

MDX RTN
c572 DC 572
C605 DC 605
C1141 DC 1 1 4 1

LOO1 A t u

LOO9 LD ONE

LO11 s J A

LO12 LO UK

ONE
KK
JA
N
K
I SP
1 pp
I E
LNT

262

DC
DC
DC
EOU
EQU
EQU
EQU
EQU
EQU
END

1
0
0
/?SF7
/75F6
/7FFE
/7FFF
/75F8
/75ED

SUBPROGRAM MOV

* L I S T ALL
*ONE WORD I N T E G E R S

S U B R O U T I N E MOV (L A , L B t L C)
COMMON K O Q E ~ 2 3 8 0) ~ I Q A T (9 0 , 2 ~ ~ I T ~ l ~ ~ ~

I F (t A - L B l 2 9 3 ~ 2
2 LD=Z+LA-P

M- 2*LB-l
M= 2* LB-1
Na2+1LB+LC-l)
DO 1 K o M e N
K O O E l L D) = K O O E (K)

1 I ~ J ~ L r I I r 1 D ~ I E e 1 F f ~ K O N , L M t , L P V t N C P s N V e I E X ~ I G T ~ ~ M ~ ~ N A ~

1 LD=LO+l
3 R E T U R N

END

SUBPROGRAM SHF

* L I S T ALL
*ONE WORD INTEGERS

SUBROUTINE SHF I t A s L B)
COMMON KODE~2380~rIDAf~90t2~eIT~lO),

DO 1 K s l t 2
M * I D A f (LA #K 1
I D A T ~ L A ~ K) ~ I D A T (L B t K)

1 I D A T (L B t K) * M
R E T U R N
END

l I ~ J ~ L ~ I I ~ I D ~ I E ~ I F T ~ K O N + L ~ T ~ L P V t N C P ~ ~ V ~ I E X f i I G T ~ N M B ~ N A P

PROGRAM INTL3

+ L I S ? SOURCE PROGRAM
+ I O C S (1 1 3 2 P R I N T E R t O I S K I
+ONE WORD INTEGERS

DIMENSION INf(3)
DEFINE FILE 3630?20,1,U,II)
I N 1 t 1 10
I N T 1 2) ~ 5 8 0
I N T t 3) = O
II=l
W R I T E (3' I 1 1 I N T
S I P 1
R E A D 4 3 8 1 % l I I N ?
WRIfEt 3 9 1 1 (I N T (K 1 r K a l o 3 1
FORMAflPW ,315)
CALL E X I T
END

263

PROGRAM ALT5
* L I S T ALL
+ONE WORD INTEGERS
* I O C S (D I S K # 1 1 3 2 PRINTERICARD)

DEFINE F I L E % 6 4 0 0 r l ~ r I I I
DIMENSION ~ 0 P ~ 1 0 0 ~ ~ ~ # K E E P ~ 6 ~ r I ~ R ~ ~ O ~ ~ I T ~ ~ l O O ~ ~ K C H ~ 4 O J
DIMENSION L R P T I l S l
R E A D (2 t 3 0) (I ~ R (I ~ r i ~ l r S O I

CALL DATSW (10,MZZ f
GO TO (8 0 0 , 5 0 0) t M Z Z

R E A D (S ' I l ~ ~ ~ I O P ~ J r K ~ ~ ~ ~ l ~ 4 ~ ~ J ~ ~ r l O O ~
GO TO 99

500 CONTINUE
DO 29 M = t # 1 0 0
DO 29 N t 1 ~ 3

29 I O P (M r N) ~ 2 5 7 0
99 R E A D ~ 2 r 1 0 0 ~ I P N v ~ K E E P o r K + l r 6 ~ , I P 4

3 0 FORMAT(50A l)

800 I I = l

100 FORMAT(I3 r2X ,6A l r8X , I4)
WRITE(3~100)IPN#(KEEP~K)#K=1#6)#IP4
IF (I P N) 1 2 0 # 1 2 0 r 1 0 1

L L f K E E P (K 1
DO 1 0 3 N t 1 # 3 7
IF I L L = I C R (N)) 1 0 3 , 1 0 2 r 1 0 3

GO TO 104

WRIT€(3 ,1035)

GO TO 99
104 CONTINUE

DO 1 0 5 Ma193
MK=M+M

I O P (I P b # 4) = I P 4
GO TO 99

W R I T E ~ 5 ~ I I ~ ~ ~ I O P ~ 3 ~ K 1 , K 1 1 , 4) r l r l r 1 0 0)
GO T O (1 1 @ 5 5 0) # M Z Z

C A L L DATS\J (0 ,K
GO T O (3 1 9 3 2) r K

101 00 104 K = 1 , 6

102 K E E P (K) = N - l

1 0 3 CONTINUE

1 0 3 5 FORMAT(38H *+***+THE ABOVE NAME IS INVALID++****)

105 IOP(IPNrM)=256*KEEP(MK=l)+KEEP(MK)

1 2 0 II*l

550 CONTINUE

3 1 1111
R E A D (S ' I I) (I I O P (J I K) ~ K ~ ~ ~ ~) ~ J = ~ # ~ O O)
W R I T E (3 ~ 1) 1 ~ 1 O P (J # K) r K t l , 4) # J ~ l ~ 6 0 ~

f FORMAT(416)
32 L R P T (l) = 4 3 0

L R P T (2 1 ~ 2 6 4
L R P T (3 1 ~ 3 8 6
L R P T (4 1 ~ 2 6 8
LRPT 5 1 e430
L R P T 1 6) = 2 6 4
L R P T (7 1 ~ 4 3 0
LRPT (8 1 a 2 6 1
L R P f 4 9 1 ~ 3 8 7
L R P T (1 0) = 2 6 8
L R P f (l l) = 2 1 8
L R P T (1 2) = 2 6 5
L R P T ~ f 3 ~ = 4 3 0

264

L R P T (1 4) = 2 6 2
L R P T (l 5 J r 2 6 5
R E A D 1 2 , 3 0) (K C H (K) , K 1 1 8 , 3 4) s (K C n (K I , K I S l l 7)
KCH(1) = 1
KCHt 2 1 3 10
KCH13)+100
K C H (4) = 1 0 0 0
1 1 = 4 O l
W R I T E ~ 5 t 1 X l ~ L R P T ~ I ~ ~ I ~ ~ ~ 1 5 ~
I I 1467
WRITE(5~II~(KCH1K)~K+1,34),(fCR~K~~K=l~SO~
1 1 1 7 0 1
DO 2 K = 1 ~ 1 0 0

2 I t R (K) = O
CALL DAtSW(19XDS)
DO 9 Jp1970
R E A D (2 , 3) (K C H (K) t K i l , 4 0)

3 F O R M A f (4 0 A 2)
DO 4 K " l t 4 0
I F (K C H (K) = 1 6 4 4 8) 4 @ 5 # 4

I T B (J) = I I
I F (K 1 8 ~ 8 9 6

GO T O (6 0 e 9 1 r I O S

4 CONTINUE
5 KIK-1

6 W R I T E ~ 5 ' f I) ~ K C H ~ M) ~ M ~ l ~ K)

60 W R I T E t 3 ~ 7) J t 1 K C H (M ~ t M ~ l ~ 4 O) @ I T B ~ ~ ~
7 FORMAT(1H t 1 2 e 2 H e40A292H 9 1 5 1

8 GO T 0 (8 0 * 9 I , I D S

9 CONTINUE

GO TO 9

8 0 WR I TE(3 t7 13

I T B (J) = I I
I P 6 0 1
WRITE(5' I I) ITB(K , K m 1 * l o o)

11 CALL E X I T
END

265

PROGRAM ALT5A

*LSST SOURCE PROGRAM
*IOCS(1132 PRINTER~CARDSOISKI
*ONE WORD INTEGERS

DIMENSION ~ C f ~ 5 6 r 2 ~ ~ I C K (8 0 O J ~ I C A (4 1)
DEFINE FSLE 5(640091eU@II)
DO 1 K ~ 1 r 5 6
fCT(K,l)=O

1 IC"TKr2)=0
I Is2212
DO 14 K11656
ICNT=O
I = l

2 R E A Q (2 , 3) (1 C A (L I , L r l , 4 6 1
3 FORMAt(40At)

Ma41
4 MrM-1

IF(M)5@5r7
5 IF(ICNt)14r14~6
6 Ma41

9 IF(ICAfM)-1644818r4,8
8 IF(ICA(M)~23387)10e9rlO
9 1 0 2

GO TO 11

M=M=l
IF(M)17@17r19

19 fF(ICNT)14r14,18
18 fCNT=ICNT=l

GO TO 13
10 M=M+l
1 1 ICA(MIr23387
19 DO 12 tol,M

ICNT=ICNT+l
12 ICKlICNT)=ICAIL)

GO TOI2r14)rI
13 ICT(K,l)=fI

I C T (K @ 2 1 = ICNT
W R I T ' E I 5 ' 1 I) (I C K ~ M ~ r M ~ l ~ I C N T ~

I I=2100
W R I f E ~ 5 ' I I) L ~ I C T ~ K ~ M) r M ~ l ~ 2 ~ ~ K ~ 1 ~ 5 6 1
~ R I T E ~ 3 ~ 1 6 ~ ~ ~ 1 C l l K ~ M ~ ~ M ~ l r 2) ~ K ~ l ~ 5 6 ~

CALL EXIT
END

14 CONTINUE

16 FORMAT(1H ,2151

266

PROGRAM HOLTE
L I B R
ENT
DC
DC
DC
DC
DC
DC
DC
DC
oc
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
oc
06
DC
oc
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
Q C
DC
06
DC
DC
O f
DC

x DC
HOLVB EQU

ENQ

HOLTB
0
/ 2 0 0 0
/loo0
10800
io400
/0200
1 0 1 0 0
10080
i o 0 4 0
10020
/ 0 0 1 0
/4000
1 8 4 2 0
/8100
/ 8 0 A O
1 8 0 0 0
/ O O A O
1 4 1 2 0
18120
/2420
1 0 1 2 0
/3000
/ 4 2 2 0
1 4 4 2 0
I 8 2 2 0
/40AO
/ 0 4 2 0
1 0 2 2 0
/goo0
/ 8 8 0 0
/8400
/a200
/ 8 0 8 0
/ 8 0 4 0
/8020
/8010
/ 5000
/ 4 8 0 0
/ 4 4 0 0
/ 4 2 0 0
/4 100
14080
/ 4 0 4 0
/4020
140 10
/ 2 8 0 0
/ 2 4 0 0
/ 2 2 0 0
/2100
1’2080
12040
/2020
/2010
0
x-2

BLANK
0
1
2
3
4
5
6
7
0
9
a

e
E

AMPERSAND

1

+
E

B
APOSTROPHE
/
Y

S
LESS THAN
SEMI COLON
POUND SIGN
A T SIGN
A
B
C
D
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
W
X
Y
z

267

PROGRAM EBCTB

L I B R
ENT
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
OC
DC
DC
DC
DC
DC
DC
DC
oc
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
oc
DC
DC
B e
DC
DC
D e
DC
DC

EBCTB
11611
/ 1 5 8 1
1 2 5 0 3
11405
13509
1 0 5 4 1
1 4 0 2 1
/FOCI,
/ F l F C
/F2D8
/F3DC
/F4FO
/ F 5 F 4
I F 6 0 0
I F 7 0 4
/F8 E4
/F9EO
1 6 0 8 4
/4€300
I C 5 3 4
/4EDA
/ S O 4 4
/7EC2
/5DF6
/4DFE
/ 6 8 8 0
/ 7DE6
/61BC
/5CD6
/ 5 8 4 0
/ 4 C DE
/5ED2
/7BCO
/7C04
/ C 1 3 C
/C2 18
/C3 IC
/ C 4 3 0
/C6 10
/C7 14
/ C 8 2 4
/C920
/D17C
/D258
/ D 3 5 C
/D470
/ 0 5 7 4
10650
/ D 7 5 4
/D8 64
/ D 9 6 0
/ E 2 9 8
/ € 3 9 C
/ E 4 6 0
/ESB4
/E690
/ E 7 3 4

BACKSPACE
CARRIER RETURN
L I N E FEED
SHIFT TO PRINT BLACK
SHIFT TO PRINT RED
T AWL ATE
BLANK
0
1
2
3
4
5
6
7
8
9
"
0

E

AMPERSAND

1

+
t

I
APOSTROPHE
/

5
LESS THAN
SEMICOLON
POUND SIGN
A T S I G N
A
8
C
D
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
f
U
v
W
X

*

268

DC /E8A4 Y
DC /E9AO 2

x DC 8
EBCTB EQU x-2

END

2 6 9 l 2 7 0

